
Protocol Engineering for Web Services

Conversations

Shamimabi Paurobally

School of Electronics and Computer Science, University of Southampton

Southampton SO17 1BJ, UK. sp@ecs.soton.ac.uk

Nicholas R. Jennings

School of Electronics and Computer Science, University of Southampton

Southampton SO17 1BJ, UK. nrj@ecs.soton.ac.uk

Abstract

Although web services aim to bring about seamless and effective communication
in a wide variety of Internet applications, the interactions between them are cur-
rently limited to simple request-response exchanges. However, in the longer term
we believe this is unsustainable. In particular, we believe that more complex pro-
tocols for web service conversations are necessary if the participants are to tailor
their needs and offers to the prevailing context and they are to coordinate multiple
services in open and realistic environments. To this end, this paper combines and
extends two recent web service languages, WS-Conversation Language (WSCL) and
WS-Agreement, in order to obtain a method for engineering protocols of sufficient
expressiveness for the next generation of flexible and autonomous services. Specifi-
cally, we propose that the protocols include speech-acts as the individual messages
and we show how to model such speech-acts as WS-Agreement schemas, which can,
in turn, be imported into the specification of the protocols in WSCL. To demon-
strate our approach we express a standard contracting protocol in the extended
WSCL/WS-Agreement languages. Furthermore, we use statechart notation as a vi-
sual counterpart to help developers write clients that flexibly interact with a service
and to help users to better understand how to interact with a service. Finally, we
show that the translation between statecharts and WSCL/WS-Agreement protocols
is straightforward.

Key words: web services, conversations, interaction protocols, WSCL,
WS-Agreement.

Preprint submitted to Elsevier Science 29 November 2004

1 Introduction

In the last decade, web services [1] have emerged as a new paradigm that
supports loosely-coupled distributed systems in service discovery and service
execution. In this context, a web service is viewed as an autonomous soft-
ware component, offering some specified functionality, that can be discovered
and invoked across the Internet. Current examples of web services are on-
line travel reservations, purchasing books at Amazon.com, map services at
maps.yahoo.com and currency converters. Generally speaking, the aim of the
web services endeavour is to obtain an environment where service customers
and service providers can locate one another, connect with each other dy-
namically, set (negotiate) the terms and conditions of service invocation auto-
matically and then execute the necessary actions according to the prevailing
contract. To this end, a web services architecture has been developed that
consists of five layers for supporting service description, publishing service de-
scriptions and discovering services. Then standards such as Business Process
Execution Language for Web Services (BPEL4WS) [2] are defined over the
web services architecture to enable higher level functionality such as service
composition, choreography and transactions. The key advantages of these and
related standards include interoperability between distributed applications re-
gardless of the underlying platform, implementation language and operating
system. Thus, because web services use standard communication protocols
(such as HTTP, FTP and SOAP [3]), distributed applications are easily ac-
cessible via the Internet, even through firewalls. Another advantage is that web
services are specified in the cross-platform modeling language XML (eXten-
sible Markup Language). This allows heterogeneous distributed applications
to be described in a common way, which, in turn, facilitates the adoption of
XML-based web services as standards in industry.

Given these advantages, it is clear that web services have much to offer. How-
ever there are a number of shortcomings which prevent approaches that may
cause this promise to remain unfulfilled. In particular, there are shortcomings
with respect to the prevailing views of interaction and negotiation in the next
generation of web services where open environments and collaboration between
services will be common (see [4] for a general discussion about the importance
of flexible interactions in service-oriented systems). There are two proposals
that start to capture such flexible interactivity, namely the web services con-
versation language (WSCL) [5] and the web services agreement specification
(WS-Agreement) [6]. The former focuses on synchronisation aspects; what
are acceptable message exchanges and the order in which they should occur.
The latter specifies the terms of an agreement in the context of the service
description. However this work will not fulfill its full potential because it is
limited to simple request-response exchanges in which a web service remains
a self-contained application without any ability to collaborate with other web

2

services in order to satisfy a request. In particular, such simple exchanges are
unsuitable for coordinating transactions between multiple web services be-
cause of the explosion in the amount of communication. Moreover advanced
transactional systems where participants continuously tailor their needs and
offers are also beyond the scope of request-response messages because of the
absence of negotiations. In both cases it can be seen that richer and more
flexible interactions such as auctions and contracting protocols are needed.
Given this and because such issues have been extensively researched upon for
the last decade in the software agents community, this paper argues that work
on enabling interaction between web services would benefit from the insights
and techniques from the field of multi-agent systems. In more detail, the work
we develop in this paper extends the WSCL and WS-Agreement standards to
propose a framework for engineering interaction protocols and constructing
flexible conversations in the web services domain. Unlike the current simple
offer-accept protocols specified in WSCL and WS-Agreement, this paper con-
siders more complex interaction protocols between more than two parties.
Moreover, to overcome the un-intuitiveness problem of XML-based specifica-
tions, we propose statecharts as a graphical representation of these protocols.
We also propose a translation between statecharts and the XML-based proto-
cols in order to ensure there is a clear bridge between the specifications and
the implementations.

Against this background, this paper advances the state of the art by devel-
oping a framework that enables richer and more flexible interactions between
web services to be specified. In particular, the foremost contribution is that
we extend the conversational capabilities of web services by supporting non-
trivial interactions in which several messages have to be exchanged before
the service is completed and/or the conversation may evolve in different ways
depending on the state and the needs of the participants. This increase in flex-
ibility and expressiveness is achieved through the use of speech-acts such as
propose, call for proposals and inform (rather than just offer-accept as is the
case currently). Second, in contrast to WSCL and WS-Agreement which only
concretely analyse interaction between two services, we describe a case study
involving more than two web services. The third contribution is that these
non-trivial forms of interaction allow users to better understand the service
execution semantics and how to interact with a service. Fourth, by separately
defining speech-acts as WS-Agreement and modeling interaction protocols in
statecharts, we contribute to providing a more structured method for engi-
neering protocols and designing web service conversations. Web services are
usually not subject to a rigid analysis and design phase and functionality is of-
ten published in an ad-hoc way, which can lead to misunderstandings between
parties. To overcome this, we propose a design method (different speech-acts
that can be imported and modeling protocols using statecharts) to construct
protocols which is compatible with the schemas in WSCL and WS-Agreement.
Thus, as the number of services to be integrated grows and the environment

3

becomes more dynamic, our work should help developers to understand how
to write clients that flexibly interact with a service and to develop automated
tools to dynamically bind to a service based on the specified characteristics.
Our fifth contribution is to research in agent interactions, where, to date, much
of the work has yet to be put to test in open and dynamic environments. In
this vein, our work provides a dynamic environment for studying agent in-
teractions. Last, but not least, we bring together the research on WSCL and
WS-Agreement. Now on their own, they respectively lack expressiveness and
use of interaction protocols, but when taken together complement each other
when it comes to specifying web services conversations.

The paper is structured as follows. Section 2 discusses web services and criti-
cally analyses the WSCL and WS-Agreement specifications from the perspec-
tive of supporting flexible interactions. Section 3 describes our extensions to
the WS-Agreement Schema and our modeling of a number of central speech-
acts as WS-Agreement. Section 4 extends the WSCL schema and describes
how to construct interaction protocols that are composed of sequences of
speech-acts defined in WS-Agreement. Section 5 provides an application of
our extensions by using them to specify a standard contracting protocol (the
Contract Net protocol [7]). Section 6 discusses the visualisation of these XML-
based protocols in statecharts and provides a translation between the two
notations. Finally, section 7 presents our conclusions and future work.

2 Web Services

Web services are self-contained software components that expose specific func-
tionality on the Internet, such that other applications can use them by means
of established web protocols and data formats such as HTTP and XML [1].
Their appeal over other interoperability standards, such as the Common Ob-
ject Request Broker Architecture (CORBA) [8] and the Distributed Compo-
nent Object Model (DCOM) [9], is the simplicity and flexibility of the archi-
tecture. Instead of assuming a common set of predefined interfaces, the model
relies on a basic set of message and document formats.

In more detail, there are five components to a layered web services architec-
ture (see figure 1). The lowest (first) layer consists of Internet protocols such
as HTTP and FTP. The second layer is concerned with message packaging
using the Simple Object Access Protocol (SOAP) [3]. The third layer specifies
how to describe and connect to networked web services in the Web Services
Description Language (WSDL). The fourth layer, Universal Description Dis-
covery Integration (UDDI), aims at creating a framework for publishing and
discovering services over the Internet. The fifth, and top layer, the Web Ser-
vices Flow Language (WSFL), defines a language for composing web services.

4

Service Interaction

Service Composition
Web Services Flow Language (WSFL)

Service Discovery and Publication

Web Services Description Language (WSDL)
Service Description

HTTP, FTP, e−mail
Network Layer

Universal Description Discovery Integration (UDDI)

Simple Object Access Protocol (SOAP)
XML−based Messaging

WS−Agreement, WSCL, Interaction Protocols, Speech−Acts

Fig. 1. Web Services Architecture Stack

Standards built over this five layered architecture intend to allow service inter-
actions such as compositions, negotiations and collaborations . However, this
leads to the question about how developers will provide and deal with the in-
creasing expressiveness, flexibility, and adaptability that web service systems
are likely to require. To this end, in this paper, we take the view that existing
work from the fields of multi-agent systems can shed some light on how best
to tackle this question.

The relation between web services and agent systems has already been men-
tioned by Booth et al. in [1] where they state that a web service is viewed as
“an abstract notion that must be implemented by an agent. The agent is a
concrete entity (a piece of software) that sends and receives messages, while
the service is the set of functionality that is provided”. Given this, a web ser-
vice is the representation of a defined functionality of an autonomous software
application or component and is located on the Internet. (Thus it shows sev-
eral of the characteristics of an autonomous agent [4]). We also adopt this view
of a web service being published and managed by a software agent. However,
despite this relation between web services and multi-agent systems, communi-
cation patterns in the web services domain remain at the request-reply level,
whereas in the realm of software agents they are much richer. Thus agents can
engage in complicated scenarios (such as auctions and negotiations).

To remedy this lack of interactivity between web services, we believe standards
should be designed over WSFL so that web services can engage in electronic
contracts. Specifically, we propose to achieve this capability with web services
by adapting the approach used by agent systems for conversing through agent
communication languages and protocols. Thus, we combine and extend ex-
isting web services specifications, WSCL and WS-Agreement for describing,
respectively, conversations and agreements with web services (sections 4 and
3).

5

2.1 Web Services Conversation Language (WSCL)

WSCL captures the conversation sequence that a web service is expecting
to engage in by describing the order in which its WSDL-described operations
should be invoked. In particular, a WSCL schema specifies the documents sent
and received and the order of exchange between participants in a conversation.
It defines a service behaviour in terms of a list of interactions regarding the
documents to be exchanged and a list of transitions to describe allowable inter-
action orderings. Thus there are four main elements to a WSCL specification
[5]:

(1) Document type descriptions specify the types of XML documents that the
service can accept (InboundXMLDocument) and transmit (OutboudXMLDo-
cument) in the course of a conversation.

(2) Interactions model the actions of the conversation as document exchanges
between two participants. There are five types of interactions: 1) Send an
outbound document, 2) Receive an inbound document, 3) SendReceive
for sending and then expecting to receive an inbound document as a reply,
4) ReceiveSend is the inverse order of SendReceive, 5) Empty does not
contain any exchange and is used at the start and end of a conversation
for exchanging documents.

(3) Transitions specify the ordering relationships between interactions. A
transition specifies the source interaction, a destination interaction, and,
optionally, a condition related to the document type of the source inter-
action.

(4) Conversation is the container that lists all the interactions and transitions
in a WSCL schema.

An example of a simple conversation is given in figure 2. This can be in-
terpreted as showing a simple purchase conversation from the perspective of
a seller when receiving catalogue inquiries. Figure 3 shows the corresponding
WSCL representation of the interaction in figure 2. The name of the Conversa-
tion in the WSCL specification is given as StoreFrontServiceConversation.
There are two special interaction types, Start and End to denote the initial and
final transitions. There are two ReceiveSend Interactions – CatalogInquiry
and Quote. Through transitions entering CatalogInquiry, a seller receives an
inquiry for a catalogue in the form of an incoming XML document “Cata-
logInquiry” located at “http://c123.org/CatRQ” with id=“CaRQ”. The seller
replies with an outbound document “CatRS” located at “http://c123.org/CatRS”.
The buyer receives a quote from a seller through the transition from CatalogIn-

quiry to Quote through an inboundXML document “QRQ” located at
“http://c123.org/QRQ”. After receiving a quote, the buyer may send another
inquiry to the seller or end the conversation through a transition to the End

Interaction.

6

CatalogInquiry
In:CatRQ
out:CatRS

Quote
in:QRQ
out:QRS

out:QRQ out:CatRQ

Fig. 2. Catalogue Inquiry Conversation (taken from [5])

<Conversation name="StoreFrontServiceConversation"

initialInteraction="Start" finalInteraction="End">

<ConversationInteractions>

<Interaction interactionType="ReceiveSend" id="CatalogInquiry">

<InboundXMLDocument hrefSchema="http://c123.org/CatRQ" id="CatRQ"/>

<OutboundXMLDocument hrefSchema="http://c123.org/CatRS" id="CatRS"/>

</Interaction>

<Interaction interactionType="ReceiveSend" id="Quote">

<InboundXMLDocument hrefSchema="http://c123.org/QRQ" id="QRQ"/>

<OutboundXMLDocument hrefSchema="http://c123.org/QRS" id="QRS"/>

</Interaction>

</ConversationInteractions>

<Conversation Transitions>

<Transition>

<SourceInteraction> href="Start"/>

<DestinationInteraction> href="CatalogInquiry"/>

</Transition>

<Transition>

<SourceInteraction> href="CatalogInquiry"/>

<DestinationInteraction> href="CatalogInquiry"/>

</Transition>

<Transition>

<SourceInteraction> href="CatalogInquiry"/>

<DestinationInteraction> href="Quote"/>

</Transition>

<Transition>

<SourceInteraction> href="Quote"/>

<DestinationInteraction> href="CatalogInquiry"/>

</Transition>

<SourceInteraction> href="Quote"/>

<DestinationInteraction> href="End"/>

</Transition>

</ConversationInteractions>

</Conversation>

Fig. 3. WSCL Specification of the Catalogue Inquiry Conversation

2.2 Weaknesses of WSCL Conversations

The strength of WSCL lies in the specification of the Interactions and
Transitions, which allows some from of sequenced messaging. However, on
examining the example in figures 2 and 3, a number of weaknesses in the
template for describing conversations appear.

First, WSCL conforms to the WSDL specification of request-response oper-
ations between two participants (the service provider and requestor). Such

7

a request-response protocol is too simple for participants wishing to bargain
and dynamically tailor their needs according to their available resources (as
argued in section 1).

Second, the participants’ identities are not explicit, neither are actions (such
as Receive or Send) explicitly associated with the perpetrator. This lack of
expressiveness is not suitable for open environments with many participants.
For example, consider the case of a group of m agents, where only agents A
and B send a message or expect to receive a message from C. Now since there
is no binding of messages to who sent or received what, an agreement from A
to C may be interpreted by C as an agreement from B to C, which can cause
disputes between parties. In particular, we have interpreted the catalogue in-
quiry example to be a seller receiving an inquiry and sending back responses
and quotes. But, in fact, there is no annotation to the interactions and transi-
tions in the XML code to specify that it has to be a seller who is receiving the
inquiries and that there is another buyer to whom the seller responds. Thus,
if the seller was sending the same catalogue information,“CatRS”, to multiple
buyers, we would not be able to differentiate between various buyers and their
responses.

Third, conversations are specified from the view-point of one of the partici-
pants (usually the service provider). Thus the client has to interpret the spec-
ification by inverting the message direction. For example, a conversation is
published in a service directory from the perspective of the provider and so
the first interaction is a Receive or ReceiveSend interaction. Thus, an initia-
tor (a customer) has to derive its version by converting the actions, for example
Receive into Send, ReceiveSend into SendReceive, Send into Receive and
SendReceive into ReceiveSend. Inbound documents from a provider’s per-
spective should be interpreted as outbound documents from the customer’s
viewpoint and outbound documents for a provider as inbound documents for
the customer. Such inversion is not always straightforward in complex proto-
cols and although two participants can successfully interact if their protocol
are duals of each other, this does not scale to more than two agents.

Fourth, the conversation specifications in WSCL remain at the level of ex-
changing documents and do not support more interaction and negotiation
prior to sending or receiving a document. For example, the simple CatalogInqui-
ry transition involves more than just passing a document. It may be that the
agents negotiate over the ability, time and price to access a catalogue or its
subsections. However, protocols for such negotiations cannot be expressed in
the current WSCL schema because it does not include any concept of bargain-
ing, bidding or the set of attributes over which to negotiate.

Fifth, there is no method specified for correlating a transition from a SourceIn-
teraction with the inbound or outbound document field. For example, in fig-

8

ure 3 and its counterpart representation in WSCL, it is not clear which of
the outbound document “CatRS” or “QRQ” in CatalogInquiry, or both, is
associated with the transition from CatalogInquiry to Quote.

2.3 WS-Agreement

WS-Agreement specifies an XML-based language for creating contracts, agree-
ments and guarantees from offers between a service provider and a client. In
this case, an agreement may involve multiple services and includes fields for
the parties, references to prior agreements, service definitions and guarantee
terms. Here the service definition is part of the terms of the agreement and is
established prior to the agreement creation. An agreement is defined as being
composed of:

(1) Name identifies the agreement and is used for reference in other agree-
ments.

(2) Context includes parties to an agreement, reference to the service pro-
vided and possibly other related or prior agreements.

(3) Service Description Terms provide information to instantiate or identify
a service to which the agreement pertains.

(4) Guarantee Terms specify the service levels that the parties are agreeing
to and may be used to monitor and enforce the agreement. They consist
of: 1) the list of services it applies to, 2) the list of variables representing
domain-specific concepts (e.g. response time or bandwidth), 3) optional
conditions that have to be met for the guarantee to be enforced, 4) con-
ditions to satisfy the guarantee and 5) one or more business values (e.g.
the penalty upon failure to meet the objective, the strength of a commit-
ment by a service provider or the importance and confidence of meeting
an objective).

An agreement template follows the above structure. A service provider offers
an agreement template describing the service and its guarantees. Negotiation
then involves a service consumer retrieving the template of agreement for a
particular service from the provider and filling in the appropriate fields. The
filled template is then sent as an offer to the provider. The provider decides
whether to accept or reject the offer, depending on its resources. Although
offers and agreements have mostly the same fields, an offer contains choices
for an agreement from the service customer for the service provision. In an
agreement, the choices in an offer are modified by the service provider to
finalise the agreement.

9

2.4 Weaknesses of WS-Agreement Contracts

The strength of WS-Agreement lies in a well-defined template for specify-
ing agreements. The template or part of the template, such as the service
description terms and the guarantee terms, can be used in the content of ex-
changed messages. Moreover, generally speaking, this template is suitable in
cases where interactions are concerned with reaching agreements and drawing
up contracts.

The first significant weakness lies in the fact that messages in WS-Agreement
are limited to two types – offer and agree, according to a template published
by a service provider. The WS-Agreement specification is only used at the last
stage in a transaction where the parties are closing their interaction with a
contract specified as a WS-Agreement. Different situations requires different
types of interactions, where offer and agree messages may not be sufficient or
appropriate. For example, in a collaborative interaction, messages are speci-
fied for informing, confirming or dis-informing other parties about the state of
the world. Another type of interaction would be competitive situations such
as auctions where messages can be bids, call for bids and announcing the win-
ning bid. Another situation would be when the provider and customer have
non-matching preferences, negotiation type interactions include messages for
making offers, counter-offers, and proposals for helping the parties to learn
about each other preferences, to revise their offers and proposals and to even-
tually come to a mutually acceptable agreement. In the multi-agent systems
field, such actions such as proposals and call for proposals are referred to as
speech-acts and are specified through an agent communication language [10].
In this context a speech-act conveys a special meaning to a receiver (for ex-
ample, to inform the receiver about the state of the world). Speech-acts can
be considered as classes of asynchronous messages modeled on the Theories of
Speech-Acts enunciated by Austin [11] and Searle [12]. Their semantics may be
similar to that defined in agent communication languages such as FIPA ACL
[10], but in this paper we do not enforce any style of semantics. Specifying
speech-acts, such as making the call for proposals, generating the proposals,
accepting proposals, and informing a web service of a fact all require changes in
the WS-Agreement specification. To do so, we re-use how speech-acts are mod-
eled in multi-agent systems to specify speech-acts as WS-Agreement and as a
result increasing the set of messages that can be exchanged as WS-Agreement.

The second significant weakness lies in the fact that there is no interaction
protocol between parties specified in WS-Agreement. There is only a two step
conversation, an offer followed by an agree. Without an adequate set of speech-
acts and specification of how to construct interaction protocols, the usefulness
of a WS-Agreement exchange is limited to cases such as buying from cata-
logues, with take-it or leave-it offers from the seller or buyer. For example the

10

Contract Net protocol is probably the most widely used interaction protocol
in the multi-agent systems field and it cannot be expressed solely through
the WS-Agreement specification. In the Contract Net protocol, there is no
offer-accept situation, but rather call for proposals are made by a manager for
contractor to carry out a task. Here a manager can be a web service making a
call for proposals for other web services to execute some task. After a call for
proposal, the contractors, send proposals to the manager. Even if we increase
the WS-Agreement schema with various speech-acts, there is no concept of
how to sequence messages to form a valid conversation. Another example of
the inadequacy of WS-Agreement becomes apparent when we consider inter-
actions based on auctions in which there is a sequence of sellers posting their
item, bidders making bids, and auctioneers announcing winning items. The
sequencing of these actions are missing from the WS-Agreement specification,
but this shortcoming can be remedied by combining the WS-Agreement and
the WSCL schemas.

3 Speech-Acts in WS-Agreement

In this section we first specify speech-acts as WS-Agreement and then, in
section 4, we show how such specifications can be sequenced through WSCL
schemas to form interaction protocols and conversations. As mentioned in
the previous section, we can list a number of actions, such as offer, accept,
inform, request, bid, sell, propose, and call for proposal, that are commonly
used in interaction protocols 1 . Given this, we re-use and extend the structure
for WS-Agreement to specify such speech-acts within the wsag tag, taking
care to remain compatible with the WS-Agreement specification. Thus, let an
agreement consist of the context and both the service definition and guarantee
terms (as per section 2.3). Whilst re-using the structure of a WS-Agreement
schema, we nevertheless need to extend it to include the participants of an
interaction and any action to be executed (to overcome the weaknesses dis-
cussed in section 2.3). These modified schemas are given in section 3.1 and
are then used to define the necessary speech-acts as WS-Agreement schemas
(in sections 3.2 to 3.6).

1 In the definition of all of the speech-acts, we assume sincerity and ignore Gricean
conditions [10]. Gricean conditions express the belief that the sender does not believe
the receiver already believes the proposition, or is uncertain about it. We make
these assumptions because we believe that Gricean conditions introduce inessential
complexity and can be expressed as an axiom holding in the framework.

11

3.1 Extensions to WS-Agreement

We add two types to the WS-Agreement schema to express perpetrators and
recipients of (1) exchanged speech-acts and (2) process executions. We do this
by extending the Context field to include a speech-act. In figure 4, it can be
seen that a speech-act is defined as a complex type, called Speech-Act, with
attributes the sender, the list of recipients and any action to be executed. For
example, if the web service s sends a speech-act sa(r,α) to web service r, the
details about the participants (s and r) and the action (α) in sa are added to
the context field. Thus, there is one initiator as the sender s of the speech-act,
a list of recipients r, and the action (α) as an attribute of the speech-act which
is of type WSCL Process (wscl:Process) (as later defined in section 4).

We also extend the ServiceDescriptionTerms field in WS-Agreement to in-
clude the action (α) that may be sent in a speech-act (as defined in figure 5)
in order to specify details about which service executes the action and which
service should be notified about the action’s execution. In this case, it can
be seen that an action has a name, which web service should execute it, the
receivers of the execution results, and any pre-conditions for executing the
action.

<xs:complexType> xs:Name="Speech-Act "

<xs:attribute> Name="xs:NCName" </xs:attribute>

<xs:sequence>

<xs:element name="Initiator" type="xs:NCName"/>

<xs:simpleType name="Respondents" use="optional">

<xs:list item Type="xs:NCName"/>

</xs:simpleType>

<xs:element name="Process" type="wscl:Process"/>

</xs:sequence>

</xs:complexType>

Fig. 4. Definition of Speech-Act Type in the Context field
<xs:complexType> xs:Name="Action "

<xs:sequence>

<xs:element name="Executor" type="xs:NCName"/>

<xs:element name="Action-PreCondition" type="xs:boolean" defaultvalue="false"

use="optional" />

<xs:element name="Process" type="wscl:Process"/>

</xs:sequence>

Fig. 5. Definition of Action Included in ServiceDescriptionTerms

Using the above types and the WS-Agreement schema, we can now specify the
different speech-acts that can be part of our negotiation interaction protocols.

3.2 The Offer Speech-Act

The offer speech-act is a take-it or leave-it offer and precedes an agreement or
a rejection to terminate an interaction. It thus resembles the WS-Agreement

12

offer of an agreement, with the terms, service description and guarantee of the
offer. However, we also allow either the service provider or the service client
to make an offer. Thus, an agreement template may not only be published
from the service provider, but a client may also devise its own template and
an offer can be sent by either the provider or the client. Here an offer γ from
a sender s is sent to a receiver r, declaring amongst other things and the
terms of an eventual agreement. An offer is expressed as s.offer(r,γ) and its
XML representation, which is compatible with an AgreementOffer in WS-
Agreement, is as follows:

<wsag:Offer>

<wsag:Name> "xsd:NCName" </wsag:Name>

<wsag:Context>

<wsag:AgreementInitiator> xs:Name="s " </wsag:AgreementInitiator>

<wsag:AgreementProvider> xs: Name="r " </wsag:AgreementProvider>

<wsag:Speech-Act> wscl:Process=γ </wsag:Speech-Act>

<wsag:TerminationTime> xs:Time </wsag:TerminationTime>

</wsag:Context>

<wsag:Terms>

<wsag:ServiceDescriptionTerm wsag:Name="xs:NCName " wsag:ServiceName="xs:NCName ">

<xs:element name="offer" type="wsag:AgreementOffer"

xs:value= r can agree or reject to do action to satisfy offer γ/>

</wsag:ServiceDescriptionTerm>

<wsag:GuaranteeTerm wsag:Name="xs:NCName " wsag:ServiceScope="wsag:ListofServiceNames ">

<wsag:Variables wsag:Name="xsd:NCName" wsag:Metric="xsd:QName"> </wsag:Variables>

<wsag:QualifyingCondition> ...</wsag:QualifyingCondition>

<wsag:ServiceLevelObjective> ...</wsag:ServiceLevelObjective>

<wsag:BusinessValueList>

<wsag:Importance> xsd:integer </wsag:Importance>

<wsag:Penalty> xsd:integer </wsag:Penalty>

<wsag:Reward> xsd:integer </wsag:Reward>

</wsag:BusinessValueList>

</wsag:GuaranteeTerm>

</wsag:Terms>

</wsag:Offer>

3.3 The Agreement Speech-Act

An agree action follows an offer which is not rejected. Here an agreement is
compatible to that defined in WS-Agreement and includes the context, the
service description and the terms of the agreement. As for an offer, either a
service provider or the client may make the agreement. In addition, we make
explicit that there is an agreement to perform an action, which to this end
is included in the service description. Thus, the sender s informs the receiver

13

r that it will perform an action given a precondition. An agreement may be
expressed as s.agree(r,γ), where the agreement γ expresses the fact that a spe-
cific web service (either s or r or a third party) will perform an agreed action
α when the conditions in the ServiceLevelObjective become true. We show
below the salient points (ServiceDescriptionTerm) in an XML representa-
tion of an agree (again this is compatible to an Agreement in WS-Agreement).
Below we denote the service or the agent performing α by Executor (which
can be the sender or receiver of the speech-act) and the condition for executing
the action by Cond.

<wsag:Agreement>

<wsag:Name> xs:γ </wsag:Name>

<wsag:ServiceDescriptionTerm wsag:Name="Perform-Action" wsag: ServiceName="xs:NCName ">

<xs:element name="agree" type="wsag:Agreement"

xs:value <!--Call procedure γ e.g. /bin/Perform-Act(Executor, γ) />

<wsag:ServiceDescriptionTerm wsag:Name="xs:NCName " wsag:ServiceName="xs:NCName "/>

<wsag:GuaranteeTerm wsag:Name="xs:NCName " wsag:ServiceScope="wsag:ListofServiceNames ">

<wsag:ServiceLevelObjective> Cond holds </wsag:ServiceLevelObjective>

<!--same as offer, i.e. variables, conditions, penalties and rewards. -->

</wsag:GuaranteeTerm>

3.4 The Inform Speech-Act

The inform speech-act is a basic one that that can be used to define others.
Here the meaning of an inform is that the sender informs the receiver that a
given proposition is true. The XML representation of s.inform(r,φ) is shown
below:

<wsag:Inform>

<wsag:Name> NCName <!--e.g. s.inform(r,φ) > </wsag:Name>

<wsag:Context>

<Participants:Initiator> Sender "s " </Participants:Initiator>

<Participants:Respondents> Receiver "r " </Participants:Respondents>

</wsag:Context>

<wsag:Terms>

<wsag:ServiceDescriptionTerm wsag:Name="inform" wsag:ServiceName="xs:NCName ">

<xs:element name="inform" type="xs:boolean" value="φ" minOccurs="1"/>

</wsag:ServiceDescriptionTerm>

</wsag:Terms>

</wsag:Inform>

The inform action may be expressed as s.inform(r,φ), where sender s informs
receiver r that φ holds. This means s may inform r about the state of a

14

service or an agreement. In our XML representation of inform, the proposition
φ is included in the ServiceDescription-Terms because informing about a
service (for example, whether it is accessible or it requires payment) is in fact
some form of service description. The inform parameters can permeate to the
Guarantee terms – ServiceLevelObjective and QualifyingCondition – if
the condition within the inform expresses some guarantee condition to be
true.

3.5 The Proposal and Call for Proposals Speech-Acts

A propose speech-act means that sender s proposes receiver r to do an action
γ. This can be expressed as s.propose(r,γ). Here s may be a web service which
advertises (sends proposals) for executing specific operations and sending par-
ticular results back. On the other hand, r may be a web service outsourcing a
task and accepting proposals from other web services. Thus, in general, pro-
posals are a means for web services to collaborate and form an agreement
about task execution. As for inform, proposals are defined in the Context

and the ServiceDescriptionTerms fields, as shown below. In this case, the
condition for s to execute the action in a proposal is that it receives an accept
proposal from r, requiring received(r.accept(s,γ)) to be true.

<wsag:Propose>

<wsag:Name> NCName <!--e.g. s.propose(r,γ) > </wsag:Name>

<wsag:Context>

<Participants:Initiator> Sender "s " </Participants:Initiator>

<Participants:Respondents> Receiver "r " </Participants:Respondents>

<wsag:Speech-Act> wscl:Process=γ </wsag:Speech-Act>

<wsag:TerminationTime> xs:Time </wsag:TerminationTime>

</wsag:Context>

<wsag:Terms>

<wsag:ServiceDescriptionTerm wsag:Name="propose" wsag:ServiceName="xs:NCName ">

<Action:Executor> sender s </Action:Executor>

<Action:Process> γ </Action:Executor>

<Action:Action-PreCondition> received(r.accept(s,γ) </Action:Action-PreCondition>

<Action:Operation> do(r,γ) <!--call procedure γ on service r) </Action:Operation>

</wsag:ServiceDescriptionTerms>

</wsag:Terms>

</wsag:Propose>

A call for proposal is normally broadcasted from a sender to a number of
agents or services. Here, let such a call be denoted by s.cfp(r,γ) where sender
s sends a call for proposal to (one or more services) r to do γ. This can be
considered as a request for r to respond with a proposal or a refusal to execute

15

γ. Thus, a call for proposal is specified as a request speech-act embedding as
action to be carried out by the receiver to be either a proposal or a refusal. A
sender requesting a receiver to perform some action is given as s.request(r,γ)
where s requests r to do γ. Here the condition for r to do γ in the call for pro-
posal specification is that there has been a proposal and an acceptance of the
proposal between s and r. The action-precondition field in a call-for-proposal
schema thus includes received(r.propose(s,γ)) and received(s.accept(r,γ)). In a
call for proposal, there is a choice between sending a proposal or a refusal in
the ServiceDescriptionField.

3.6 The Accept Proposal Speech-Act

The speech-act s.accept(r,γ) is read as sender s sending an accept proposal
to receiver r for r to execute γ. As for the proposal speech-act, the Context

and ServiceDescriptionTerms express an accept proposal action. Thus, we
provide only the fields in the ServiceDescriptionTerms below. The condition
is that there has been a prior proposal.

<wsag:Accept>

<wsag:Name> NCName <!--e.g. s.accept(r,γ) > </wsag:Name>

<wsag:Terms>

<wsag:ServiceDescriptionTerm wsag:Name="accept" wsag:ServiceName="xs:NCName ">

<Action:Executor> receiver r </Action:Executor>

<Action:Process> γ </Action:Executor>

<Action:Action-PreCondition> received(r.propose(s,γ) </Action:Action-PreCondition>

<Action:Operation> do(r,γ) <!--call procedure γ on service r) </Action:Operation>

</wsag:ServiceDescriptionTerms>

</wsag:Terms>

</wsag:Accept>

4 Schema for Protocol Construction

Given that we have defined the speech-act content of the messages, as schemas
compliant with the WS-Agreement standard, we now focus on the form of a
web services conversation. This primarily involves the sequencing of the mes-
sages in order that a conversation that follows a protocol leads to a desired
state. Such sequencings are given by the allowable transitions in a protocol.
Now in the WSCL schema, allowable sequences are defined in the Interaction
and Transition fields, but they are not bound to a web service or an action
(as discussed in section 2.2). Therefore, we increase the expressiveness of the
WSCL schema for web conversations by extending the WSCL representation

16

for sequenced document exchange to also represent sequenced speech-act ex-
changes in addition to the interaction and transition elements.

As described in section 2.1, a conversation has ConversationInteractions

and ConversationTransitions. Thus, we add states to Interactions and
actions to Transitions. In the next section, we define the type state as part
of an Interaction and the complex type action as part of a Conversation-

Transition. States added to the Interaction element are named proposi-
tions and include optional fields indicating which service triggered that state.
Atomic actions and complex processes that are added to ConversationTransi-
tions are of type wscl:Process and explicitly name the transitions. This re-
sults in an interaction protocol where actions (such as offer) lead to specific
states that are propositions that hold after an offer. Currently, in the WSCL
specification, transitions that lead from Source to Destination Interaction
(states) are not named and deal only with document exchanges. However as
these transitions are distinguished only by their Source and Destination

states, there is significant scope for ambiguity since there can be more than
two transitions in or out of an Interaction (state). Moreover, we need to
name actions and we also need to express the fact that a transition can also
be a speech-act.

4.1 States

ConversationInteractions list a sequences of Interaction elements that
reference the documents exchanged and the types of exchanges (see section
2.1). We add a State element to the Interaction element in the WSCL
Schema definition. A State has a name, a boolean attribute (whether the
state holds or not), and optionally includes the service that triggered the
state, the recipients and any action needed.

<xsd:element name="Interaction>

<xsd:element name = "State"/>

<xsd:complexType>

<xsd:attribute name="xs:Name" type="xs:boolean" use="required"/>

<xsd:sequence>

<xsd:element name="Initiator" type="wsag:Initiator" use="optional"/>

<xsd:element name="Respondents" type="wsag:Respondents" use="optional"/>

<xsd:element name="Process" type="wscl:Process" use="optional"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:element>

17

By way of illustration, we add a state to one interaction in the example of figure
3. Specifically, the state offered(s,r, α) is added to the “CatalogInquiry” state.

<Interaction interactionType="Receive" id="CatalogInquiry">

<InboundXMLDocument hrefSchema ="http://conv123.org/CatalogRQ.xsd" id ="CatalogRQ"/>

<State Name="offered" value="true" >

<Initiator> s </Initiator>

<Respondents> r </Respondents>

<Process> α </Process>

</State>

</Interaction>

4.2 Transitions

In WSCL, the type ConversationTransitions includes Transition elements,
which list the SourceInteraction and DestinationInteraction and any
conditions for the transition. The wscl:Process type is thus defined in XML
as follows:

<xsd:element name ="Process">

<xsd:attribute name="Name" type="xsd:ID" use="required"/>

<xsd:complexType>

<xsd:choice minOccurs="0" maxOccurs="1" >

<xsd:element name="SA" type="wsag:specific-speech-act"/>

<xsd:element name="Atomic" type="wsdl:operation"/>

<xsd:element name="Sequential"/>

<xs:sequence>

<xsd:element name ="Process" type="wscl:Process">

<xsd:element name ="Process" type="wscl:Process">

</xs:sequence>

<xsd:element name="Alternative"/>

<xs:choice>

<xsd:element name ="Process" type="wscl:Process">

<xsd:element name ="Process" type="wscl:Process">

</xs:choice>

<xsd:element name="Iterative"/>

<xsd:element name ="Process" type="wscl:Process">*

</xsd:choice>

</xsd:complexType>

</xsd:element name >

In our extensions, we additionally allow transitions to be actions other than ex-
changing documents (such as exchanging speech-acts or carrying out some op-
eration on a web service). To this end, we first define a type called wscl:Process,
which can be a speech-act defined as a WS-Agreement schema (see section 3,
for example wsag:offer, wsag:agreement or wsag:inform). Here, an enumer-

18

ated type listing speech-acts specified in WS-Agreement schemas is defined as
wsag:specific-speech-act. A WSCL process can also be an Empty process
or an atomic operation (for example, /bin/file/open<filename>) or a com-
plex WSCL process that is a sequence, an alternation or an iteration of WSCL
processes.

The above definition of wscl:Process has been used in our WS-Agreement
schema extensions (in section 2.3) and the definition of states (in section 4.1).
In addition, transitions are typed as wscl:Process processes. Thus, we add an
element called Trigger in the WSCL definition of transitions. A trigger has a
name, is of type wscl:Process and is associated with the service performing
the wscl:Process. A trigger also includes the recipients being affected by the
WSCL process, the action which is an attribute in the trigger (for example,
when sending a request to do α, the trigger is request and the action attribute
is α) and the conditions that need to hold in order to perform the action. An
example trigger is the service s sending a wsag:offer to r to perform α if
Cond is true (that is, s.offer(r,α)). The element trigger, added to transitions
(after SourceInteractionCondition) is defined as follows:

<xsd:element name ="Trigger">

<xsd:attribute trigger-process="Name" type="wscl:Process use="required"/>

<xsd:complexType>

<xsd:element name ="Sender" type="wsag:Initiator">

<xsd:element name ="Recipients" type="wsag:Respondents">

<xsd:element name ="Action" type="wscl:Process">

<xsd:element name ="Condition" type="xs:boolean" defaultvalue="false">

</xsd:complexType>

</xsd:element name >

5 Contract Net Protocol in WSCL/WS-Agreement

Given the above extensions to WSCL and WS-Agreement, it is now possible
to describe richer interactions between web services. To illustrate this, in this
section we discuss the Contract Net protocol since it involves multiple par-
ticipants and allows some form of collaboration between web services when
executing a task. In addition, this protocol shows realistic interactions for en-
abling transactions and negotiations and illustrates the use of several of the
speech-acts that we defined in section 3.

The interactions in the Contract Net protocol can be enumerated as follows:
1) A manager m issues a call for proposals (cfp) to group of services, G, to
do process α, m.cfp(G, α). 2) Potential contractors c respond with proposals,
c.propose(m, cα). 3) The manager either rejects or accepts the proposal or can-

19

cels the call for proposal (respectively through m.reject(c, α), m.accept(c, α),
m.cancel(c, α)). 4) Contractors inform the manager of success or failure of
their execution, c.inform(m, done(α)).

The speech-acts propose, inform, call for proposal and accept have all been
defined as WS-Agreement schemas in section 3 and therefore can be called
directly in the Transition and Interaction elements in the WSCL spec-
ification. Below we show the cfped (after a call for proposal) and proposed
(after a proposal) states and the call for proposal and accept transitions of the
Contract Net protocol as a WSCL conversation. The Conversation is named
“ContractNetProtocol” and has the standard start and end interactions de-
fined. In the ConversationInteractions of the fragment of the protocol, the
interactions cfped and proposed are defined as ReceiveSend interaction types.
The Interaction cfped specifies a call for proposal as an inbound document
and a proposal as an outbound one. It is the State field in the Interaction

that specifies that the call for proposal is received by the Initiator c (a
contractor) and that the proposal is sent to respondent Initiator m (the
manager) to perform process α . Similarly, the proposed interaction specifies
that a proposal is received as an inbound document and outbound documents
are agreements or rejections. Again, the state field specifies that the initiator
m (manager) receives a proposal and sends out to c (contractors) agreements
or rejections for doing process cα.

The second part of the fragment specifies the ConversationTransitions,
where the conversation is started by making a call for proposal from the start
interaction leading to the cfped interaction. The call for proposal is defined
as wsag:CallForProposal process, which is a WSCL process and has been
defined in section 3.5. Within the trigger field, we also specify that the sender
m (manager) sends out the call for proposal to receivers G (contractors) to
perform action α. Similarly, from the proposed SourceInteraction, there is
a transition to accepted, meaning that an acceptance may follow a proposal.
The trigger field specifies the accept as of type wsag:accept, sent by m to c
for doing process cα.

<Conversation name="ContractNetProtocol"

<!-- WSCL specification for the Contract Net protocol; import WSCL and WS-Agreement -->

initialInteraction="Start" finalInteraction="End" >

<ConversationInteractions>

<Interaction interactionType="ReceiveSend" id="cfped">

<!-- receives a call for proposal and sends out a proposal document -->

<InboundXMLDocument hrefSchema="http://conv.org/call-for-proposal-1" id="cfp-1"/>

<OutboundXMLDocument hrefSchema="http://conv.org/proposal" id="proposal"/>

<State Name="cfped" >

<!-- c receives the call for proposal and proposes to m -->

20

<Initiator> c </Initiator>

<Respondents> m </Respondents>

<Process> α </Process>

</State>

</Interaction>

<Interaction interactionType="ReceiveSend" id="proposed">

<!-- receives a proposal, sends out an agreement or rejection document -->

<InboundXMLDocument hrefSchema="http://conv.org/proposal" id="proposal"/>

<OutboundXMLDocument hrefSchema="http://conv.org/agreement" id="agreement"/>

<OutboundXMLDocument hrefSchema="http://conv.org/rejection-reason" id="rejection"/>

<State Name="proposed" >

<!-- m receives proposals and rejects or agrees with c -->

<Initiator> m </Initiator>

<Respondents> c </Respondents>

<Process> cα </Process>

</State>

</Interaction>

</ConversationInteractions>

<!-- actions triggering interaction -->

<ConversationTransitions>

<Transition>

<!-- conversation started by a CallForProposal -->

<SourceInteraction href="start"/>

<DestinationInteraction href="cfped"/>

<Trigger trigger-process"wsag:CallForProposal">

<!-- CallForProposal is of type wsag and sent by m to G to perform α-->

<Sender> m </Sender>

<Recipients> G </Recipients>

<Action> α </Action>

</Trigger>

</Transition>

<Transition>

<!-- The accept transition from a proposed state -->

<SourceInteraction href="proposed"/>

<DestinationInteraction href="accepted"/>

<Trigger trigger-name="wsag:accept">

<!-- accept is of type wsag and sent by m to G -->

<Sender> m </Sender>

<Recipients> c </Recipients>

<Action> cα </Action>

<Condition> time < deadline </Condition>

</Trigger>

</Transition>

</ConversationTransitions>

</Conversation>

21

6 Visualisation of Protocols

As can be seen from the example of the previous section, the XML represen-
tation of a protocol can be relatively long. Now this may be not be a problem
when programming the conversations because it is possible to re-use tools for
specifying web services [13], [14] to code WSCL/WS-Agreement conversations.
On the other hand, these conversation templates have to be shared between
services and agents, and implemented by their developers. One developer may
need to implement a protocol proposed by some other web services or agent
for them to follow it together. A developer unfamiliar with another’s proto-
col may misundersand it. Therefore, misunderstandings about allowable states
and transitions must be prevented for successful conversations and agreements.
To alleviate this, we propose a visual representation of the WSCL protocol
to facilitate comprehension and to provide a high-level yet precise, language
which allows protocol designers to express and reason about interaction con-
cepts at their natural level of abstraction. Specifically, we choose statecharts
[15] (which are part of UML diagrams) as a visual representation since in our
previous work we have found them to be intuitive and sufficiently expressive
for expressing multi-agent interaction protocols [16]. Moreover, since a web
service behaviour is a partially ordered set of operations, then an XML pro-
tocol can be mapped onto a statechart. In particular, Interactions, States
and Transitions in a WSCL protocol are analogous to states and transitions
in a statechart as we show in section 6.3. First, however, we show how the con-
tract net protocol is expressed as a statechart (section 6.1), then we provide a
translation between statecharts and WSCL components (section 6.3). We also
introduce the notion of sub-states which allow more concise specifications of
conversations for both WSCL and statechart representations (section 6.2).

6.1 The Contract Net Protocol in Statecharts

Figure 6 shows an abstraction of the Contract Net protocol in statecharts (see
section 5 for a description of the protocol). In particular, let the manager be
denoted by m, the group of contractor web services as G and one specific con-
tractor web service as c. As can be seen, there is a hierarchical representation
of states with parent and substates (see section 6.2). The outermost parent
state is contract net which has open and closed as sub-states. This means that
a Contract Net can either be open or closed, but not both. The interaction is
started with a call for proposal m.cfp(G,pm) from manager m, to the group
of web services G for task pm. The resulting state is cfped(m,G,pm), parame-
terised with the manager as sender, the receivers and the task requested for
execution. Contractors may refuse a call for proposal, ultimately leading to a
closed and refused state if no proposals are received. However, if a proposal

22

is received from a contractor, the state becomes proposed(c,m,p), and remains
so as other proposals occur, until the manager either accepts (m.accept(c,pc))
or rejects (m.reject(c,pc)) the proposals. Acceptances have the terms of agree-
ments and service descriptions included. Those web services having received
accepts eventually send c.inform(m,pc) to the manager indicating the success
or failure of executing the task. The interactions terminate in a sub-state of
closed.

open
closed

m.cfp(G,pm)

c.refuse(m,pm); c.refuse(m,pm)

c.propose(m, pc);
proposed(c,m,p)

c.propose(m, pc)

failed(c,m,pc)

m.cancel(G,pm)

rejected(m,c,pc)
m.accept(c, pc)

m.reject(c, pc)

c.failure(m, pc)

c.inform(m, pc)

contract net(pm)

cancelled(m,G,pm)

refused(c,m,pm)
cfped(m, G, pm)

accepted(m,c,pc)

informed(c, pc)

Fig. 6. Contract Net Protocol in Statecharts

It can be seen that the statechart representation of the Contract Net proto-
col is more concise and intuitive than the corresponding XML protocol from
section 5. Therefore for the reasons outlined at the beginning of section 6 we
believe it would be useful to accompany the protocols defined in WSCL/WS-
Agreement with a statechart counterpart. Given this, we investigate the ease
with which translations from XML to statecharts (and vice versa) can be
made. Such translations are needed if we are to automatically generate the
WSCL conversation from the design of a protocol in statecharts. The reverse
translation is also important because it can help one developer to understand
another developer’s protocol. The first step of the translation requires the def-
inition of sub-state in WSCL because sub-states are a fundamental part of
statecharts as can be seen in the Contract Net protocol statechart in figure 6.

6.2 Sub-States in WSCL

Part of the conciseness of the Contract Net protocol in figure 6 is due to the
use of sub-states. Here, sub-states are states embedded within other states (for
example, the contract net parent state in figure 6 has the sub-states open and
closed). Such representations are particularly useful because any transition
from a parent state is also a transition from its sub-state, without needing
to explicitly show the transition from the sub-state. Thus, hierarchical states

23

allow the redundancy in expressing the same transition from all the sub-states
of a particular parent state to be removed. Thus, in figure 6, we need only to
show the cancel transition from the open parent state and it can be inferred
that a cancel transition can also occur from the sub-states cfped, proposed and
accepted.

As such, neither WSCL nor WS-agreement allow sub-states to be expressed
although sub-states would reduce the length of the specification of conversa-
tions. To this end, we introduce the type substate in the WSCL schema.
In so doing, we impose the constraint that transitions from the parent state
also hold for all of its sub-states. Thus, the element substate is a list and is
defined inside the scope of the element State in an Interaction. The XML
definition of substate is given as follows:

<xsd:element name="State">

<xsd:simpleType name="substate" use="optional">

<xs:list item Type="Interaction:State"/>

</xs:simpleType>

</xsd:element>

In the definition of sub-states, only the nearest sub-states need to be defined
from the perspective of a parent state. For example, in the Contract Net
protocol, accepted is the sub-state of open, which itself is the sub-state of
contract net. This means there are three levels of nesting. However, in the
declaration of the contract net, only open and closed have to be included (i.e.
the three sub-states of open are included only in the declaration of open and
not the contract net state).

6.3 Translation between WSCL and Statecharts

The bidirectional translation between the WSCL/WS-Agreement protocols
and statecharts is straightforward. There are three components in the state-
charts to translate:- the states, their sub-states and the transitions. States
that have only an incoming transition in statecharts are Receive WSCL
Interaction types. States that have only an outgoing transition in state-
charts are Send WSCL Interaction types. States that have both an incoming
and outgoing transition in statecharts are ReceiveSend WSCL Interaction

types. The information about inbound and outbound documents may be vi-
sually represented inside the states as in figure 2. Given this, figure 7 shows a
general translation from a statechart to a WSCL/WS-Agreement protocol (the
translation from an XML protocol to a statechart is just the reverse process).

Translating that Stateβ is a sub-state of Stateα from a statechart requires
identifying, in the WSCL specification, the field specifying Stateα and embed-

24

.....

.....

.....

.....

.....

<Interaction interactionType="Receive" id ="Stateα" >

<Transition>

<SourceInteraction> href= "Start"/>

<DestinationInteraction> href= "Stateα"/>

<Trigger trigger-process = "wscl:Process:Actionα">

<Transition>

<DestinationInteraction> href= "end"/>

<Trigger trigger-process = "wscl:Process:empty">

<SourceInteraction> href= "Stateβ"/>

Actionα

Stateα

Stateβ

Stateα

<state Name ="Stateα" >

</state>

<Interaction interactionType="..." id ="Stateα" >

<Initiator>

<substate Name = "Stateβ" />

<Interaction interactionType="Receive" id ="Stateβ" >
Stateβ

Actionβ

same transition as above for Actionβ

Actionβ

Stateα Stateβ

<Interaction interactionType="ReceiveSend" id ="Stateβ" >

<Transition>

<DestinationInteraction> href= "Stateβ"/>

<Trigger trigger-process = "wscl:Process:Actionβ">

<SourceInteraction> href= "Stateα"/>

Fig. 7. Translation of a Protocol from a Statechart to a WSCL/WS-Agreement
Specification

ding in it a field substate with name Stateβ. Translating, from statechart
to WSCL, a transition Actionα that initialises a conversation in state Stateα

requires that there is a Transition with SourceInteraction Start, trigger
process Actionα of type wscl:Process and DestinationInteraction Stateα.
A transition Actionβ from Stateα to Stateβ in statecharts is translated to a
Transition with SourceInteraction Stateα, trigger process Actionβ of type
wscl:Process and DestinationInteraction Stateβ. A terminating transi-
tion Actionβ into Stateβ is translated from statecharts into WSCL in two
steps. First the translation of the transition leading from the previous state
into Stateβ through action Actionβ is translated. Then, there is a Transition

with SourceInteraction Stateβ, trigger process empty of type wscl:Process
and DestinationInteraction end.

7 Conclusions and Future Work

In this paper, we have focussed on flexible interactions between web services
because they are fundamental if web services are to reach their full potential
in future networked environments. In such environments, there are a number
of limitations on the applicability of the current versions of the web service
agreement and conversation languages stemming from the fact that interac-
tions between service providers and clients require more than just requesting
simple tasks. Specifically, this paper addresses the need for developers to code
client applications that can bind to and interact with services of a specific

25

type, according to an interaction protocol. To achieve this , we have speci-
fied speech-acts as WS-Agreement schemas for richer messages in conversa-
tions than just offer and agree. We have combined WS-Agreement and WSCL
schemas in order to specify sequences of messages from the perspective of
WS-Agreement and, from the perspective of WSCL, to exchange speech-acts
and obtain more flexible and richer conversations. We have also extended the
structure of WS-Agreement to include sender and recipients of messages for
the specification of speech-acts. In turn, the Web Services Conversation Lan-
guage has also been extended to include states, sub-states, transitions and
WSCL processes. These extensions allow who is sending which message to
whom to be expressed. Consequently, as we have shown, protocols of realistic
expressiveness (such as the Contract Net protocol) can be specified in our
WSCL/WS-Agreement extended language. Finally, the statecharts notation
has been proposed as a visual counterpart to facilitate comprehension of the
protocols and we have shown that translation between a statechart protocol
and its XML representation is straightforward.

As future work, we intend to verify the Contract Net protocol in WSCL/WS-
Agreement in order for it to be sharable without leading to any misunderstand-
ings amongst participants. In particular, model checking will be investigated
since it automates the verification of properties of finite-state concurrent sys-
tems. Moreover, much of the work on web services and agent interactions
remains to be tested in real open environments and we intend to test our
work in these environments, where network communication are not perfect.
More specifically, the reliability of web services is decreased by the fact that
they use HTTP (which is a best effort delivery service). Given this, we can
bring to here our existing work on multi-agent interaction protocols in fallible
communication domains [17]. In this, we investigated synchronisation of mes-
sages depending on the features of the communication layer, such as delayed
in messages.

8 Acknowledgements

We thank Professor David de Roure and Dr. Nick Gibbins for their helpful
comments on reading the paper.

References

[1] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
D. Orchard, Web Services Architecture, World-Wide-Web Consortium (W3C),
http://www.w3.org/TR/ws-arch (2003).

26

[2] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte,
S. Weerawarana, Business Process Execution Language for Web Services,
http://www-106.ibm.com/developerworks/library/ws-bpel/ (2002).

[3] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. Nielsen, SOAP Version
1.2 Part 1: Messaging Framework, World-Wide-Web Consortium (W3C), http:
//www.w3.org/TR/soap/ (2003).

[4] N. R. Jennings, An agent-based approach for building complex software
systems, Comms. of the ACM 44 (4) (2001) 35–41.

[5] A. Banerji, C. Bartolini, D. Beringer, et al., Web Services Conversation
Language (WSCL) 1.0, World-Wide-Web Consortium (W3C), http://www.w3.
org/TR/wscl10 (2002).

[6] A. Andrieux, K. Czajkowski, A. t. Dan, Web Services Agreement Specification
(WS-Agreement), World-Wide-Web Consortium (W3C), http://www.w3.

org/XML, http://www.gridforum.org/Meetings/GGF11/Documents/draft-ggf-
graap-agreement.pdf (2004).

[7] R. G. Smith, The contract net protocol: High-level communication and control
in a distributed problem solver, IEEE Transactions on Computers C-29 (12)
(1981) 1104–1113.

[8] Object Management Group, Common Object Request Broker Architecture,
http://www.corba.org.

[9] MicrosoftCom Technologies, Distributed Component Object Model, http://
www.microsoft.com/com/tech/DCOM.asp.

[10] Foundation for Intelligent Physical Agents, FIPA Communicative Act Library
Specification, http://www.fipa.org (2002).

[11] J. L. Austin, How to Do Things with Words., Oxford University Press, 1962.

[12] J. R. Searle, Speech acts: An essay in the philosophy of language, Cambridge
University Press, 1969.

[13] IBM Corporation, IBM Web Services Toolkit 2.1, http://www.alphaworks.
ibm.com/tech/webservicestoolkit.

[14] BEA Systems, Inc., Introduction to WebLogic Web Services, http://e-docs.
bea.com/wls/docs81/webserv/overview.html#1071587.

[15] D. Harel, M. Politi, Modeling reactive systems with statecharts, McGraw-Hill,
1998.

[16] S. Paurobally, R. Cunningham, N. R. Jennings, Developing agent interaction
protocols using graphical and logical methodologies, in: Programming MAS,
languages, frameworks, techniques and tools workshop, 2003, pp. 124–131.

[17] S. Paurobally, R. Cunningham, N. R. Jennings, Ensuring consistency in joint
beliefs of interacting agents, in: Proc. 2nd Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, 2003, pp. 662–669.

27

