
Recording Actor State in Scientific Workflows?

Ian Wootten, Omer Rana and Shrija Rajbhandari

School of Computer Science, Cardiff University, UK

Abstract. The process which leads to a particular data item, or its
provenance, may be documented in a number of ways. The recording
of actor state assertions – essentially data that a client or service actor
may assert about itself regarding an interaction, is evaluated as a critical
provenance component within a service-oriented architecture. Actor state
data can be combined with assertions of interaction to enable better
reasoning within a provenance system. The types of data that may be
recorded as actor state are subjective, and dependent on the nature of
the application and the eventual use that is likely to be made of this
data. A registry system that allows monitoring tools to be related to
user needs is described with reference to an application scenario.

1 Introduction

The provenance of a piece of data is the process that led to that piece of data [1,
2]. Typically, with service based projects, concern is primarily held with docu-
menting the interaction between clients and services (actors) which were involved
in a particular process as a means of capturing data provenance. Groth et al. [1]
outline that for some data, its provenance is represented by some suitable doc-
umentation of process which led to it. This documentation includes in part the
internal states of actors within the context of a particular interaction. Here, we
make clear our definition of actor state data:

Actor State Data: That information regarding the state of an actor in the
context of a specific interaction. A single assertion of actor state may concern
the internal flow of data involved in interaction results within an actor, or the
hosting environment state at a particular point in time. Assertions of actor state
can only be recorded by the actor whom the data is about and not by a workflow
enactment engine. An actor must therefore explicitly decide to make available
such information to third parties. Our focus within this paper is primarily on
how such actor state information can enhance documentation of interaction.

To capture the documentation of interaction between actors involved in a par-
ticular process, interaction assertions may also be used. Such assertions specify
which actors are involved and the messages exchanged between them. Interac-
tion assertions may be recorded by a workflow enactment engine (by copying

? This research is funded in part by EPSRC PASOA project GR/S67623/01.



all messages exchanged between actors in a workflow), or it may be explicitly
recorded by the actors themselves.

The provenance of data is concerned with how we arrive at a particular
data item, and assertions of actor state provide valuable information on how a
particular actor state (for an involved actor) has been reached during the creation
of that data item. This is achieved through the documentation of transformations
made upon the input data within an actor, and the state the system (upon which
an actor is hosted) was in when those transformations were made. Through
capturing assertions regarding the transformations on input data we are able
to determine what functionality an actor was invoking, i.e. what an actor was
doing. Capturing the state of the system also records the context under which an
actor was operating. Exposing this context allows insight into what conditions
were set which could affect the overall data result.

Actor state assertion recording differs from interaction assertion recording –
which may be recorded by a third party. All assertions concerning actor state
become unverifiable if made by a third party, and as such the actor is the only
party able to assert its own state.

Using actor state data it is possible to evaluate the behavior of an actor
over the past and make predictions on its likely future behavior. Coupled with
interaction assertions, such data may be used to evaluate whether a particular
actor is the cause of an error or inaccurate result within a workflow instance. It
also allows a better understanding of the performance patterns observed upon
an actor, through using interaction assertions to determine what was being done
when a particular behaviour pattern occurred. Within the context of a SOA,
the description of internal flow of data within an actor would also constitute
actor state data. An actor may make public the internal functions which were
performed on the input data to obtain output data. From these functions, it
is possible to construct a directed acyclic graph (DAG) detailing the process
performed internally within an actor.

We attempt to develop a customisable architecture for the recording of ac-
tor state assertions. Familiarity with the concepts of Web Services and SOAs
is assumed. The rest of this paper is organized as follows: section 2 provides
requirements for an architecture which supports actor state assertion recording.
Section 3 contains the types of data which may be recorded by an actor, and
ways in which we may categorize such data. Section 4 presents an architecture
to satisfy the requirements identified previously and an evaluation of a proto-
type system based on the architecture is provided. A summary of related work
is given in section 5 and our concluding remarks are given in section 6.

2 Requirements

A provenance recording system must address a number of requirements, espe-
cially when used in the context of a SOA. The requirements for the storage of
provenance information within a SOA have been highlighted in [1–3]. Here we
identify requirements which influenced our prototype design:



An actor state assertion system should record the internal data flow within an
actor in a verifiable, reproducible manner : It is possible to identify the activities
undertaken by an actor as a DAG – which describes a series of transformations
performed on some input data. Such graphs allow identification of how a par-
ticular data item was produced when followed in reverse. Hence, an actor that
receives input X could transform it through a series of functions fi(), eventually
leading to an output Y. This can be achieved through instrumentation of that
actor with relevant recording hooks describing such transformations and subse-
quent collection of this information by a provenance system.

An actor state assertion system should record in a non-repudiable manner any
data generated by an actor : It is necessary to assume that information collected
from any monitoring sources is accurate and provides a true reflection of the state
of the actor. As sources are co-located with an actor this assumption should usu-
ally be satisfied (although the recording accuracy may differ between sources).

An actor state assertion system should be scalable, general and customisable: As
previously stated in section 1, an actor needs to be viewed as a complete entity
for actor state assertion, i.e. an actor asserts its own state. There exist a variety
of mechanisms for capturing state information, and as such the available tools
across potential applications differ significantly. It is therefore necessary for an
actor state assertion system to able to be customised to cope with the variety of
information sources and the platforms upon which it will be hosted. A pertinent
question here relates to what data needs to be recorded and at what frequency.
Once again, both of questions can only be answered when we identify such a
systems’ application domain.

3 Actor State Assertion Categories

Actor state assertion categories describe the types of actor state data that may
be recorded. For each description, we use the term node to describe the system
on which an actor is hosted, and lifetime to refer to the length of time for which
the actor (client or service) is available. Persistent actors may be classified as
having an infinite lifetime.

Static: That data which does not change throughout the lifetime of an actor.
As a result, static data need only be recorded once during process execution.
Such data items have been previously investigated, and include: (i) Per-Node:
node identity, operating system, etc.; (ii) Per-Actor: actor identity, name, owner,
version, capability, etc. Such information is similar to that published by an actor
in a registry service in a SOA.

Dynamic: That data which may change during the lifetime of an actor. It is
therefore necessary to record this data at periodic intervals over the lifetime of an
actor. We assume that actors within our architecture do not maintain a persistent
state. Such data items may include: (i) Per-Node: memory usage, network traffic,



Fig. 1. Component Registry

etc. Such information needs to be recorded by the platform hosting the actor,
and may be made available on demand. The accuracy of such dynamic data is
dependent on the type of measurement tools being used; (ii) Per-Actor: service
execution time, uptime, availability, etc. Such dynamic data is usually derived
from other, less complex recorded metrics.

4 Conceptual Architecture

A registry based architecture for recording actor state is presented motivated by
the requirements outlined in section 2. An end user may indicate which data is
likely to be most significant to them – generally via the use of a configuration file.
The basic architecture for a registry is given in figure 1. A component registry is
co-located with an actor and holds details of the monitoring sources which are
available on the platform hosting the actor. We consider the simplest case of one
actor per platform in the first instance. The registry contains a description of
interfaces through which monitoring sources may be contacted, and a mechanism
to specify the time at which such requests may be scheduled.

A monitoring source may be a provider of a single piece of information or
a number of metrics, and therefore a way of distinguishing the relevant useful
information returned from the source becomes necessary. Within the registry, a
number of rules may be associated with a single monitoring source, and specify
the recorded actor state metrics desired during an actors’ lifetime. Two types
of rules exist within our architecture: RA(e) are runtime rules – and may be
triggered to be executed by an external or actor administrator generated event e,
e.g. a service invocation request. Such rules are immediately scheduled to execute
when an event of type e is detected by an actor. This provides functionality to
an end user who may only want to record actor state whilst a service is being
invoked. RB(t1, t2) are scheduled rules which execute between a time interval
(t2 − t1) – where ti is based on the actor clock. Using RB it is possible to
record the state of an actor outside the context of any particular interaction.
Rules of type RB must be defined and managed by an actor administrator,
and cannot be accessed via a third party. For an actor that is long running,
t1 may correspond to the time when the actor was started, and t2 set to a
large value. The result produced as a consequence of running rules of type RA

and RB may be: (i) raw data – in this case monitored data over the particular
period in question is returned as an array of values. The data corresponds to



the raw data from the monitoring tool being used; (ii) interval data – in this
case the output from the monitoring tool is sampled at periodic intervals defined
by an actor administrator. An array of values is returned, corresponding to a
value at each sample point; (iii) aggregate data – in this case only a single value
for a particular metric is returned. Such a value may correspond to either the
min, max or average over the particular period. An end user must therefore
register their rules with the actor administrator if they require particular actor
state information to be monitored. The presence of a registry allows re-use of
rules between end users. Due to the tree-like hierarchy of rule-monitor-registry
associations, the configuration of a registry is achieved through an XML file.

Fig. 2. Actor State Recording within a SOA using PReP [3]

Figure 2 shows how it is possible to capture both interaction and actor asser-
tions within a SOA. The figure illustrates how actor assertions may be related
to interaction assertions by extending the data that is submitted via the Prove-
nance Recording Protocol (PReP) [3] to an external Provenance Store (a public
and possibly remote repository). Both the client and service within such an
architecture would have independent registries, containing references to locally
available monitoring sources. Every time an interaction occurs between a client
and service, each would submit their view of their interaction to a mutually
agreed upon store.

Using Actor State Assertions: in a Web Service based workflow, a scientist
does not have direct access to the system hosting the service actors. Using actor
state information, such a user can make inferences about how or why a workflow
has performed in a particular way. For example, consider a provenance-enabled
workflow comprising of two services a and b, the workflow is executed twice
to yield two sets of interaction assertions i1 and i2 in a Provenance Store. It
also asserts actor state records a1, a2 and b1, b2 for each service actor. Both
executions yield the same results, but the time of execution differ significantly.
On inspection of i1 and i2, the experimenter has no means of determining the
source of such a problem, due to only the data which has passed between a and
b being recorded – as both interact in the same manner. Inspection of the actor’s
state record a2 reveals performance metrics indicating high usage of a’s resources



whilst being invoked. While b’s performance shows no difference between b1 and
b2, it is possible for the scientist to conclude that a was the most likely source
of such a discrepancy. If the DAG used within an actor is also known, this can
be used in conjunction with the recorded data to locate the function within an
actor which may have been the source of a particular problem.

4.1 Implementation

A prototype of the architecture described in section 4 has been realised,
and actor state recorded using an SOA-based approach. The Ganglia system
(http://ganglia.sourceforge.net) has been used as a monitoring tool for obtaining
metrics relevant to node state and recorded during service execution. Rules are
described within our registry, along with information about how often they are
to be executed and which monitoring sources they are associated with through
configuration files expressed in XML. An actor state is recorded using rules as-
sociated with the registered monitoring source to a local provenance store. A
coordinator process is responsible for checking which rules are valid at any given
time.

In figure 3 we describe a rule written in XQuery which returns results from
a Ganglia XML document. Within the query, $ganglia:doc refers to the docu-
ment we are querying, which is bound to the XQuery at execution time. Using
this description, we return the integer value (indicated in figure 3 as VAL) of
the number of bytes in per second (bytes in) (KB/s), packets in per second
(pkts in) and maximum transmission rate of the network (mtu). These values
are then operated upon as indicated in figure 3 to determine the current (net-
work) throughput of this actor.

let $N := data($ganglia:doc//METRIC[NAME="bytes in"]/VAL)

let $X := data($ganglia:doc//METRIC[NAME="pkts in"]/VAL)

let $R := data($ganglia:doc//METRIC[NAME="mtu"]/VAL)

let $bpp := $N div $X (: Calculate number of Bytes Per Packet :)

let $tp := ($bpp*$N) div $R

return <metrics><throughput>{$tp}</throughput></metrics>
(: Return our result :)

Fig. 3. Example XQuery Rule Implementation

4.2 Evaluation

For evaluation, the registry prototype is used to record assertions regarding actor
state during invocation of a data modeling service [4]. The modeller has a number
of data processing techniques and neural network and statistical models which
take incoming data sets from a client and generate models based upon them.
There are a number of modeling algorithms exposed which vary the accuracy



of the model produced, possibly at the expense of incurring a greater compu-
tation time. Our experiments use Quantitative Structure-Activity Relationship
(QSAR) to attempt to correlate biological activity to chemical compound struc-
ture described in the data set sent to it.

All experiments were conducted on a Ubuntu Linux System – AMD proces-
sor running at 1.83GHz with 512Mb of RAM. Both service and client actors are
located on the same system, and for each experiment the service actor is invoked
100 times with input data sets of varying sizes, with the length of time of invo-
cation recorded. Experiments are conducted for rules scheduled to be recorded
simultaneously (at 1000ms intervals). A Ganglia monitoring daemon is installed
making system metrics available as XML documents. This daemon is described
as the monitoring source within the registry. The registry contains configuration
files to enable scheduling of rules for runtime invocation, with each rule reflect-
ing a single metric available through Ganglia. The results of rule execution are
recorded to a local file system.

For our preliminarily benchmark, we note that the time taken to invoke the
service when no assertions are made, upon a 34KB data set is approximately
1404ms. On recording rules scheduled with intervals of 1000ms, it is noted that
the trend for overall time for execution of the service increases on addition of
each rule, reaching a maximum of 38062ms for 5 rules. We can see by these re-
sults, that while our prototype is able to record actor state assertions, it incurs
a significant overhead against a non-asserting actor operating on the same data
set. Making the comparison against our initial requirements, whilst the proto-
type has been produced in a general and customisable manner, actors where
large amounts of state data may be produced will evidently suffer from a per-
formance degradation, especially where large rule sets are constructed. Further
work therefore is necessary to modify our system to enable it to be scalable to
such situations, such as the use of a cache for monitoring source data and its
asynchronous capture.

Size of Data Set (KB)
No Of Rules 34 68 102 136 170 204 238 272 306 340

0 1404 3338 5604 8795 10382 15223 14422 23309 18114 24613
1 1752 3863 6233 8574 11220 13383 17154 18142 21574 26046
5 2416 5680 7686 15134 15826 15979 23082 28531 29919 38062

Table 1. Average Time to Complete Service Invocation

5 Related Work

In SOAs there are a number of requirements necessary for the capture of the
provenance of interactions [1–3]. The PASOA project (http://www.pasoa.org/)
has highlighted a method of representing assertions made about processes by the
actors involved through use of a p-assertion [1], suggesting 3 different p-assertion
types (Interaction, Relationship and Actor State). The p-assertion presents a



possible manner in which to represent assertions in our local provenance store
and is already being used within other projects. At the German Aerospace Center
for instance, p-assertions are being used in order to capture actor state elements
such as computation completion states (crashed, interrupted etc) and workflow
configuration parameters in the simulation of complex flight manoeuvres [5].
Such capture achieves a confidence in simulation results which a non actor state
recording mechanism may not.

A number of common items that may be part of actor state across ap-
plication domains have also been investigated by the EU Provenance project
(http://www.gridprovenance.org), which were derived from the GLUE Informa-
tion Model [6], though due to their application dependance, representation of
them has not been specified. Our registry architecture attempts to provide a
method whereby actor state assertion capture is formalised, but its content is
left customisable.

Often, elements of actor state are captured through use of annotations. In
the MyGrid (http://www.mygrid.org.uk/) project for instance, provenance data
is generated from bioinformatics experiments and classed into: the derivation
path: by which the results were generated from the input data, and annotations:
associated with a particular object or collection of objects. Such annotations
may include elements of actor state such as version data for workflows and
resources [7]. Formal representation of actor state, as well as automation of its
collection independent of application constraints, is desirable and would be useful
in evaluating the state of actors across research disciplines.

The use of performance data to obtain insights into the relationship between
application and hardware and software has previously been explored [8], enabling
automatic model generation through performance analysis. Within job-based ex-
ecution environments, work has been performed to enable provenance recording
with a minimal level of system intrusion [9]. Automatic instrumentation of such
applications with performance monitoring code is possible due to direct avail-
ability of implementation. The trade-offs between the level of intrusion to both
the application system and user, necessary to capture adequate provenance in-
formation has previously been likened to a cube [9] where intrusion to the system
and user are modelled on the x and y axis and the amount of available infor-
mation on the z-axis. The most desirable system is described as one with no
intrusion to system or user, but providing all information about the two. In
service oriented systems instrumentation of actors may not be possible, due to
their loosely-coupled interaction with the querying actor. The level of intrusion
which is possible in such environments is therefore minimal, and as such so is the
level of information able to be captured. Our system differs through exploring
how service oriented systems (where direct knowledge of implementation may
be unknown) may record assertions of actor state using resources which are not
necessarily part of the application system, alongside interaction assertions. The
combined use of such assertions is possible in two ways, understanding how an
actor performed within the context of an interaction and secondly understanding
what an actor was doing when a particular performance pattern occurred.



6 Conclusion

The use of assertions of client or service (actor) state are not often documented
within service oriented architectures, despite them being a critical component
in determining the process which led to a particular data item (its provenance).
This has been due to the application dependent nature of such data. Actor
state data can be combined with assertions of interaction between actors to
enable better reasoning within a provenance system. We have identified a number
of requirements for a system capable of actor state capture in an application
independent manner and attempted to provide a registry based architecture
which is able to satisfy them. As future work, we plan to optimise our prototype
to produce a more scalable solution and investigate other sources of monitoring
information which could be used within our architecture. Of particular interest
is the monitoring of per-actor metrics and patterns of access, especially when
multiple actors co-exist on the same platform.

References

1. Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.:
An Architecture for Provenance Systems. Technical Report (v0.6), University of
Southampton (2006) [Online]. Available: http://eprints.ecs.soton.ac.uk/12023/.

2. Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of recording and us-
ing provenance in e-Science experiments. Technical report, University of Southamp-
ton (2005) [Online]. Available: http://eprints.ecs.soton.ac.uk/11189/.

3. Groth, P., Luck, M., Moreau, L.: A protocol for recording provenance in service-
oriented Grids. In: Proceedings of the 8th International Conference on Principles
of Distributed Systems (OPODIS’04), Grenoble, France (2004) [Online]. Available:
http://eprints.ecs.soton.ac.uk/11914/.

4. Ali, A.S., Rana, O.F., Parmee, I.C., Abraham, J., Shackelford, M.: Web-Services
Based Modelling/Optimisation for Engineering Design. In: OTM Workshops. (2005)
244–253

5. Kloss, G.K., Schreiber, A.: Provenance Implementation in a Scientific Simulation
Environment. In: Proceedings of the International Provenance and Annotation
Workshop (IPAW’06), Chicago, USA, Springer-Verlag (2006)

6. Andreozzi, S., Burke, S., Field, L., Fisher, S., Konya, B., Mam-
belli, M., Schopf, J.M., Viljoen, M., Wilson, A.: Glue Schema
Specification. Technical Report (v1.2) (2005) [Online]. Available:
http://infnforge.cnaf.infn.it/glueinfomodel/index.php/Spec/V12.

7. Greenwood, M., Goble, C., Stevens, R., Zhao, J., Addis, M., Marvin, D., Moreau, L.,
Oinn, T.: Provenance of e-Science Experiments - experience from Bioinformatics. In:
Proceedings of the UK OST e-Science second All Hands Meeting 2003 (AHM’03),
Nottingham, UK (2003) 223–226

8. Taylor, V.E., Wu, X., Stevens, R.L.: Prophesy: an infrastructure for performance
analysis and modeling of parallel and grid applications. SIGMETRICS Performance
Evaluation Review 30(4) (2003) 13–18

9. Reilly, C.F., Naughton, J.F.: Exploring Provenance in a Distributed Job Execution
System. In: Proceedings of the International Provenance and Annotation Workshop
(IPAW’06), Chicago, USA, Springer-Verlag (2006)


