
PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

The Open Provenance Specification

Authors: Paul Groth, Simon Miles, Steve Munroe, Sheng Jiang, Victor Tan
John Ibbotson and Luc Moreau

Reviewers: All project partners
Identifier: D3.2.1 (The Open Specification)
Type: Deliverable
Version: 1
Version: November 23, 2006
Status: public

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

1

Page 1 of 182

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Abstract

The Open Provenance Specification is composed of the following documents: [1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11]. In this deliverable, we have concatenated 11 distinct docu-
ments for the convenience of the reader. Each of these has its own numbering (in the
footer) and bibliography. A global numbering (in the header) has been introduced for
the purpose of the table of contents:
page 6 document [1]
page 21 document [2]
page 53 document [3]
page 68 document [4]
page 90 document [5]
page 102 document [6]
page 119 document [7]
page 131 document [8]
page 154 document [9]
page 163 document [10]
page 173 document [11]

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

1

Page 2 of 182

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Members of the PROVENANCE consortium:

IBM United Kingdom Limited United Kingdom
University of Southampton United Kingdom
University of Wales, Cardiff United Kingdom
Deutsches Zentrum fur Luft- und Raumfahrt s.V. Germany
Universitat Politecnica de Catalunya Spain
Magyar Tudomanyos Akademia Szamitastechnikai es
Automatizalasi Kutato Intezet Hungary

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

2

Page 3 of 182

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Open Specification Documents

[1] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, and Luc
Moreau. The provenance standardisation vision. Technical report, University of
Southampton, November 2006.http://eprints.ecs.soton.ac.uk/
13055/ .

[2] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan, and Luc
Moreau. Data model for process documentation. Technical report, University of
Southampton, November 2006.http://eprints.ecs.soton.ac.uk/
13047/ .

[3] Paul Groth, Victor Tan, Steve Munroe, Sheng Jiang, Simon Miles, and Luc
Moreau. Process documentation recording protocol. Technical report, Uni-
versity of Southampton, November 2006.http://eprints.ecs.soton.
ac.uk/13053/ .

[4] Simon Miles, Luc Moreau, Paul Groth, Victor Tan, Steve Munroe, and Sheng
Jiang. Provenance query protocol. Technical report, University of Southampton,
November 2006.http://eprints.ecs.soton.ac.uk/13050/ .

[5] Simon Miles, Steve Munroe, Paul Groth, Sheng Jiang, Victor Tan, John Ibbotson,
and Luc Moreau. Process documentation query protocol. Technical report, Uni-
versity of Southampton, November 2006.http://eprints.ecs.soton.
ac.uk/13052/ .

[6] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and Luc
Moreau. A profile for non-repudiable process documentation. Technical re-
port, University of Southampton, November 2006.http://eprints.ecs.
soton.ac.uk/13054/ .

[7] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, and Luc
Moreau. A WS-addressing profile for distributed process documentation. Tech-
nical report, University of Southampton, November 2006.http://eprints.
ecs.soton.ac.uk/13057/ .

[8] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and Luc
Moreau. Basic transformation profile for documentation style. Technical re-
port, University of Southampton, November 2006.http://eprints.ecs.
soton.ac.uk/13049/ .

[9] Simon Miles, Luc Moreau, Paul Groth, Victor Tan, Steve Munroe, and Sheng
Jiang. Xpath profile for the provenance query protocol. Technical report, Uni-
versity of Southampton, November 2006.http://eprints.ecs.soton.
ac.uk/13051/ .

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

3

Page 4 of 182

http://eprints.ecs.soton.ac.uk/13055/
http://eprints.ecs.soton.ac.uk/13055/
http://eprints.ecs.soton.ac.uk/13047/
http://eprints.ecs.soton.ac.uk/13047/
http://eprints.ecs.soton.ac.uk/13053/
http://eprints.ecs.soton.ac.uk/13053/
http://eprints.ecs.soton.ac.uk/13050/
http://eprints.ecs.soton.ac.uk/13052/
http://eprints.ecs.soton.ac.uk/13052/
http://eprints.ecs.soton.ac.uk/13054/
http://eprints.ecs.soton.ac.uk/13054/
http://eprints.ecs.soton.ac.uk/13057/
http://eprints.ecs.soton.ac.uk/13057/
http://eprints.ecs.soton.ac.uk/13049/
http://eprints.ecs.soton.ac.uk/13049/
http://eprints.ecs.soton.ac.uk/13051/
http://eprints.ecs.soton.ac.uk/13051/

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

[10] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, and Luc
Moreau. A soap binding for process documentation. Technical report, Uni-
versity of Southampton, November 2006.http://eprints.ecs.soton.
ac.uk/13056/ .

[11] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, and Luc
Moreau. WS provenance glossary. Technical report, University of Southamp-
ton, November 2006.http://eprints.ecs.soton.ac.uk/13048/ .

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

4

Page 5 of 182

http://eprints.ecs.soton.ac.uk/13056/
http://eprints.ecs.soton.ac.uk/13056/
http://eprints.ecs.soton.ac.uk/13048/

ws-prov-overview

Authors:
Steve Munroe, U. Southampton

Paul Groth, U. Southampton
Sheng Jiang, U. Southampton
Simon Miles, U. Southampton
Victor Tan, U. Southampton

John Ibbotson, IBM
Luc Moreau, U. Southampton

November 23, 2006

Overview of the Provenance
Specification Effort

Abstract

This document provides an overview of a model of provenance along with a
description of a family of specification documents that support the model. Im-
portant aspects of the model are specified within these documents in a detailed
and clear manner that provides an unambiguous reference for developers.

1

Page 6 of 182

Contents

1 Introduction 3

2 Overview of the Provenance Model 4
2.1 Context: Service Oriented Architectures 4
2.2 Representation of Provenance . 6
2.3 Provenance Lifecycle . 10

3 The Family of Specification Documents 11
3.1 Support Documents . 11
3.2 Core Specifications . 11
3.3 Generic Profiles . 12
3.4 Technology Bindings . 13

4 Conclusion 13

2

Page 7 of 182

1 Introduction

The importance of understanding the process by which a result was generated is
fundamental to many real life applications (science, engineering, medicine, supply
management, etc). Without such information, users cannot reproduce, analyse
or validate processes or experiments. Provenance is therefore important to enable
users, scientists and engineers to trace how a particular result has been arrived
at.

Two common sense definitions consider provenance to be the derivation from
a particular source to a specific state of an item. They are taken from the Oxford
English Dictionary, and the Merriam-Webster Online Dictionary respectively and
are presented below.

Definition 1 (OED Provenance Definition) (i) the fact of coming from some
particular source or quarter; origin, derivation. (ii) the history or pedigree of a
work of art, manuscript, rare book, etc.; concr., a record of the ultimate derivation
and passage of an item through its various owners. 2

Definition 2 (MWO Provenance Definition) (i) the origin, source; (ii) the
history of ownership of a valued object or work of art or literature. 2

Both definitions are compatible since they regard provenance as the deriva-
tion from a particular source to a specific state of an item. The nature of the
derivation, or history, may take different forms, or may emphasise different prop-
erties according to interest. For instance, for a piece of art, provenance usually
identifies its chain of ownership. Alternatively, the actual state of a painting may
be understood better by studying the different restorations it underwent.

From Definitions 1 and 2, we can also distinguish two different understandings
of provenance: first, as a concept , it denotes the source or derivation of an object;
second, more concretely , it is used to refer to a record of such a derivation. We
have identified a process in a service oriented architecture (soa) as the execution
of a workflow, which we broadly see as a specification of a given service composi-
tion. Hence, by having a description of the process that resulted in a data item,
we can explain how such a data item has been obtained. Inspired by previous
work [GLM04a, GLM04b, GLM04b, MGBM05, SM03], we propose the following
definition of provenance, which makes explicit the notion of process.

Definition 3 (Provenance of a piece of data) The provenance of a piece of
data is the process that led to that piece of data. 2

In relation to the two common sense definitions of provenance, we note that
Definition 3 is concerned with provenance as a concept. Ultimately, our aim
is to specify a computer-based representation of provenance that allows us to
perform useful analysis and reasoning to support a wide variety of applications.

3

Page 8 of 182

Consequently, the provenance of a piece of data is to be represented in a computer
system by some suitable documentation of the process that led to the data.

While specific applications determine the actual form that such documenta-
tion should take, we can identify several of its general properties. Documentation
can be complete or partial (for instance, when the computation has not yet termi-
nated); it can be accurate or inaccurate; it can present conflicting or consensual
views of the actors involved; it can be descriptive or conceptual; and it can ab-
stract more or less from reality.

In this document, we introduce a framework for computational provenance;
a set of nine technical specifications that define the normative description of
the provenance framework in terms of a soa model and related XML defini-
tions. These technical specifications, summarised in Figure 1, define the means
by which:

• a computational representation of process documentation can be realised;

• process documentation can be recorded;

• process documentation can be queried;

• the recording and querying of process documentation can be made secure;

• process documentation can be recorded in distributed systems.

The family of documents comprise a set of 2 support documents, four docu-
ments that introduce and specify the core framework, four generic profiles that
extend the basic framework and one example of a technology specific binding.

2 Overview of the Provenance Model

In this section we present a intuitive, non-technical view of provenance and the
provenance model. In it we provide some context to the model before describing
definitions of the different kinds of process documentation that go to form the
basis of the model.

2.1 Context: Service Oriented Architectures

Given that our work predominantly focuses on Grid and Web Services, we sum-
marise some relevant terminology in this section. We take the broad view that
open, large-scale systems are typically designed using a service-oriented approach
[MH05], usually referred to as service-oriented architectural style [Bur00]. As far
as services are concerned, we do not intend to restrict ourselves to a specific tech-
nology; instead, we take services to be components that take inputs and produce
outputs. Specifically, the following are all considered as “services” because they

4

Page 9 of 182

Figure 1: The family of specification documents

all take some inputs and produce some outputs: Web Service, CORBA or RMI
objects, command line program.

Such services are brought together to solve a given problem typically via
a workflow that specifies their composition. With such a broad definition, we
see that WS-BPEL, WSFL, VDL, Dagman’s DAGs or Gaudi are all workflow
frameworks capable of expressing the composition of services. Likewise, a script
calling several command line commands is also regarded as a workflow.

In this abstract view, invocations of services take place using messages that
are constructed in accordance with service interface specifications. Such mes-
sages take the form of soap messages for Web services. In the case of command
line executables, we do not have explicit messages; instead, they take some ex-
plicit arguments potentially representing both inputs and outputs. We also see a
memory shared by two threads as a way of implementing such message-passing
mechanism; the message itself is the information stored in the shared memory.

5

Page 10 of 182

In a service-oriented architecture (soa), clients typically invoke services, which
may themselves act as clients for other services; hence, we use the term actor to
denote either a client or a service in a soa. An actor that sends a message is
referred to as a sender , whereas an actor that receives a message is known as a
receiver . One message exchanged between a sender and a receiver is termed an
interaction. Hence, a given interaction comprises two views: the sending of the
message and its receiving. The running of an application programmed in a soa
style requires the execution of the workflow, which characterises composition of
the services that belong to the application. Hence, the execution of a workflow is
referred to as a process . Our definition of process, like the Unix notion of process,
refers to an instance of a running program (workflow here). It has a beginning,
and, if it is finite, it has an end.

At this stage of the specification, we do not make the distinction between
resource and service [SRB06] since they are defined in the context of the specific
Web Services technology. Our broad view of message allows us to include in a
message the necessary reference to resources, as required by WSRF.

2.2 Representation of Provenance

In this section, we introduce the key elements that form the representation of
provenance in a soa.

In the previous section, we stated that provenance of a data item is to be
represented in a computer system by some suitable documentation of the process
that led to it. To this end, we distinguish a specific piece of information doc-
umenting some step of a process from the whole documentation of the process.
The former shall be referred to as a p-assertion, which we define as follows.

Definition 4 (p-assertion) A p-assertion is an assertion that is made by an
actor and pertains to a process. 2

From this definition, we derive the notion of process documentation.

Definition 5 (Process Documentation) The documentation of a process con-
sists of a set of p-assertions made by the actors involved in the process. 2

Should the actors involved in the process be the only one to document it? The
answer is yes. Indeed, if actors are not involved in the process, then no message
has been sent to them. Hence, they cannot be aware of the process, and therefore
could not possibly provide any documentation relevant to this specific execution.

We note that a given p-assertion may belong to the provenance representation
of multiple pieces of data. When a p-assertion is created (and later recorded), it
documents a step of a process in progress, which ultimately will lead to a piece
of data. At the time of the p-assertion creation, we may not know the piece of
data that will be produced; however, the p-assertion being recorded constitutes

6

Page 11 of 182

an element of the provenance representation of the data. For instance, when
some quality wood is being transported in the Amazon forest, one may not know
that it will be used for creating the frame for a future famous painting, still to
be painted and framed.

Among all the p-assertions, we now introduce two kinds of p-assertions that
allow us to capture an explicit description of the flow of data in a process: inter-
action p-assertions and relationship p-assertions .

Computer science has a long tradition of focusing on communications and
interactions as a central concept used in the study and modelling of complex sys-
tems, e.g., programming language semantics, process algebra and more recently
in biological systems models. In the context of soas, interactions consist of the
messages exchanged between actors. By capturing all the interactions that take
place between actors involved in the computation of some data, one can replay
an execution, analyse it, verify its validity or compare it with another execution.
Describing such interactions is thus core to the documentation of process.

Therefore, the documentation of a process includes a set of interaction p-
assertions , each describing an interaction between actors involved in the process.

Definition 6 (Interaction p-assertion) An interaction p-assertion is an as-
sertion of the contents of a message by an actor that has sent or received that
message; the message must include information that allows it to be identified
uniquely. 2

We do not prescribe the nature of the assertion of the message contents; instead,
such decisions are left to the specific application. For instance, an interaction
p-assertion could simply contain a copy of the message exchanged between two
actors. Alternatively, if some data contained in the message is regarded as confi-
dential by the actor or too large to be manipulated, the assertion may consist of
the message in which the data concerned has been replaced by some other data
or a pointer.

In a grid application based on command line executables, an interaction p-
assertion can include the executable fully qualified name, its inputs and its out-
puts, whereas in a Web Services based approach, interactions documentation can
include input and output soap messages, and a reference to the service, port
and operation being invoked. In the latter case, we note that an interaction
p-assertion potentially includes not only the soap message body, but also its
envelope, containing valuable information such as security, addressing, resource
or coordination contexts.

A crucial element of an interaction p-assertion is information to identify a
message uniquely. Such information allows us to establish a flow of data between
actors. Indeed, let us consider two interaction p-assertions: actor A making an
assertion αA that it sent actor B a message with identity i, and actor B making
an assertion αB that it received from A a message with the same identity i. Such

7

Page 12 of 182

a pair of interaction p-assertions αA, αB is said to be matching ; it identifies a flow
of data from actor A to B.

Actors may directly return outputs for the inputs they receive; alternatively,
they may invoke other actors in order to obtain intermediate results that help
them return their outputs. In both circumstances, the relationship between the
outputs and the inputs of the actor is not explicit in the messages themselves,
and can only be understood by an analysis of the actor’s business logic, which is
private to the actor.

We do not expect the source code of the actor to be made available, because
it may not be feasible, or the code may not be at a suitable level of abstraction.
Instead, in order to permit some understanding of the flow of data, an actor may
decide to “volunteer” some information that is only available to it. An actor
may provide relationship p-assertions that identify the relationship between its
outputs (whether as returned result or invocation message to other actors) and
its inputs (or intermediary results received from invoked actors).

Definition 7 (Relationship p-assertion) A relationship p-assertion is an as-
sertion by an actor that the sending of a message would not be occurring or a
data item it is sending would not be as it is (the effect), if it had not received
other messages or data items had not been as they are (the causes), and that this
relationship is due to its own action, expressible as the function applied to the
causes to produce the effect. 2

While matching interaction p-assertions denote a flow of data between actors,
relationships explain how data flows inside actors. Relationship p-assertions are
directional since they explain how some data was computed from other data.

Figure 2 illustrates two actors. The first is a primitive actor, i.e., one that
receives a message and produces a result, but does not invoke subsequent actors,
or alternatively, an actor that does not make assertions of the invocations it
makes of subsequent actors (say, for privacy reasons). In order to contribute
some information about its internal flow of information, it can indicate that its
output data (in the output message) is a function of the input data (contained
in the input message). The second actor of Figure 2 is not primitive, and makes
assertions of the contents of the messages it sends to and receives from another
actor that it invokes. Like the first actor, it may indicate that its output is a
function of its input; alternatively, it may explain how the data contained in the
secondary invocation message and its result relate to the input and output.

Figure 2 displays the ideal case of purely functional actors, which do not
maintain a persistent state across invocations. The same approach generalises
to stateful actors: the data in an output message can be a function of the data
received during a previous interaction and kept in a persistent store.

On the right-hand side of Figure 2, we see a symbolic representation of the
p-assertions generated by the actors. Each p-assertion has a type and a content,
and is asserted in the context of an interaction identified by a key.

8

Page 13 of 182

f

M1

M2

f

M1

M2

f

M1

M2

M3

M4
f2

f1

d1

d2

d3

d4

d1

d2

interaction key p-assertion type p-assertion content
1 interaction M1
2 interaction M2
2 relationship d2=f(d1)

interaction key p-assertion type p-assertion content
1 interaction M1
2 interaction M2
3 interaction M3
4 interaction M4
2 relationship d2=f(d1)
3 relationship d3=f1(d1)
2 relationship d2=f2(d4,d1)

Figure 2: Data flow assertions by opaque and transparent actors

Hence, interaction p-assertions denote data flows between actors, whereas re-
lationship p-assertions denote data flows within actors. Such data flows are core
elements to reconstitute functional data dependencies in execution. In the most
general case, such data flows constitute a directed acyclic graph (DAG). From a
specific data item, the data flow DAG indicates where and how the data item is
used; vice versa, following relationships in reverse helps us identify how a data
item was produced. The data flow DAG is thus a core element of provenance
representation, but it is not the only one; other p-assertions can provide further
information about internal states of actors during execution, as we now explain.

Interaction and relationship p-assertions capture the flow of data in a process.
In some circumstances, however, actors’ internal states may also be necessary to
understand the functionality, performance or accuracy of actors, and therefore the
nature of the result they compute. Hence, we introduce the notion of an actor
state p-assertion as the documentation provided by an actor about its internal
state in the context of a specific interaction.

Definition 8 (Actor State p-assertion) An actor state p-assertion is an as-
sertion, by an actor, of data received from an (unspecified) internal component of
the actor just before, during or just after a message is sent or received. It can,
therefore, be viewed as documenting part of the state of the actor at an instant,
and may be the cause, but not effect, of other events in a process. 2

Actor state p-assertions can be extremely varied: they may include the function
the actor performs, the workflow that is being executed, the amount of disk and
CPU a service used in a computation, the floating point precision of the results
it produced, or application-specific state descriptions.

9

Page 14 of 182

In summary, p-assertions can be of three disjoint kinds: interaction p-assertions,
relationship p-assertions and actor state p-assertions. We note that p-assertions
are independent of the actual service technology used to implement applications.

2.3 Provenance Lifecycle

In the previous section, we characterised the syntactic nature of p-assertions,
in the form of a broad classification in three different categories, according to
whether they document interactions, relationships or actor states. We now focus
on a dynamic characterisation of p-assertions and, in particular, when they are
created, recorded, queried and managed, with respect to process execution. These
different phases identify a provenance lifecycle, which we now describe. (We note
that such a lifecycle is to be understood in the context of application execution
and should be distinguished from a methodology that identifies design steps in
order to conceive an application that is provenance aware.)

Before discussing the provenance lifecyle, it is necessary to introduce an ar-
chitectural element. Since we aim to provide a long-term facility for storing the
provenance representation of data items, we delegate to a specific element, which
we refer to as a provenance store, the role of making persistent, managing and
providing controlled access to such provenance representation. The choice of an
explicit architectural element to embody this role in no way implies any form of
physical deployment; instead, it helps us identify the kind of functionality that
is necessary in order to offer support for provenance.

The provenance lifecycle is composed of four different phases. As execution
proceeds, actors create p-assertions that are aimed at representing their involve-
ment in a computation. After their creation, p-assertions are stored in a prove-
nance store, with the intent they can be used to reconstitute the provenance of
some data. The provenance store therefore acts as storage of p-assertions. After
a data item has been computed, users (or applications) may need to obtain the
provenance of this data item: they can do so by querying the provenance store.
At the most basic level, the result of the query is the set of p-assertions pertain-
ing to the process that produced the data. More advanced query facilities may
return a representation derived from p-assertions that is of interest to the user.
Finally, as time progresses, the provenance store and its contents may need to be
managed to handle distribution, change management, curation etc. In summary,
the provenance lifecyle is composed of four different phases: (i) creating, (ii)
recording, (iii) querying and (iv) managing. A provenance system should
provide support for all these phases.

10

Page 15 of 182

3 The Family of Specification Documents

In this section we describe each of the specification documents and supporting
documents listed in Figure 1. The content is split into four groupings. First,
we discuss two supporting documents: the overview and the glossary. The core
specifications come next, which define the key aspects of the provenance model.
After this we have a set of generic profiles that describe non-core aspects of the
model. Finally, we provide an example of one specific technology binding – a
tieing in of an aspect of the model to an implementation technology.

3.1 Support Documents

WS-Prov-Overview This document.

WS-Prov-Glo: The Provenance Glossary The WS-Prov-Glo document
[TGJ+06] provides a glossary that defines a set of terms used in the draft
provenance specification documents. The terms described are intended to
be implementation and technology independent, with the intent that they
can be analysed and applied to as many contexts as possible.

3.2 Core Specifications

WS-Prov-DM: The Process Documentation Data Model The WS-Prov-
DM document [MGJ+06] presents a specification of the data model for
process documentation. The approach is top down in nature, and starts
by describing the p-structure — the logical organisation of process doc-
umentation, before drilling down into the models of the different forms
of p-assertions. The identification of p-assertions and data items is then
described, followed by a description of a model of context that allows in-
formation about related interactions to be passed between actors.

WS-Prov-Rec: The Provenance Recording Protocol Every provenance store
supplies a Web Service interface for recording process documentation. It has
a single operation, record, that takes Record document as input and returns
an acknowledgement as result. The WS-Prov-Rec document [GTM+06] de-
fines the schema for the record request and acknowledgement messages.

WS-Prov-Query: Provenance Queries In the WS-Prov-Query document
[MMG+06b], a protocol is specified by which a querying actor and prove-
nance store can communicate in performing a provenance query. This pro-
tocol primarily takes the form of an abstract WSDL interface defining mes-
sages to be accepted and produced by a provenance store. This document
defines the schema for a provenance query request, the behaviour expected
in processing that request and the resulting response.

11

Page 16 of 182

WS-Prov-XQuery The process documentation data model defines schemas to
be used for documentation about the execution of a process, process doc-
umentation, and introduces a provenance store — a type of Web Service
with the capability for storing and giving access to process documentation.
In particular, process documentation has a defined schema, the p-structure,
which clients of a provenance store can navigate in queries to extract par-
ticular pieces of process documentation. In this document, a protocol is
specified by which a querying actor and provenance store can communicate
in performing a process documentation query. This primarily takes the
form of an abstract WSDL interface defining messages to be accepted and
produced by a provenance store.

3.3 Generic Profiles

WS-Prov-DM-Sec: Secure Provenance The data model for process docu-
mentation [MGJ+06] describes p-assertions as individual units for docu-
menting process. These p-assertions can be signed by asserting actors in
order to establish accountability for their creation. The WS-Prov-DM-Sec
document [TMG+06a] extends on the data model for the basic p-assertions
(relationship, actor-state and interaction) to include support for signatures.

WS-Prov-DM-Link: Distributed Provenance Process documentation can
often be distributed across different provenance stores. To enable the dis-
covery of related process documentation, a mechanism is required to link
disparate but related process documentation to enable the effective col-
lection of such documentation to answer provenance queries. The WS-
Prov-DM-Link document [MTG+06b] represents a WS-Addressing profile
on distributed process documentation that provides mechanisms to solve
this problem.

WS-Prov-DM-DS: Transforming Process Documentation The activity of
constructing an interaction p-assertion from a message can be considered as
a single atomic transformation, which needs to be qualified by the actor cre-
ating that p-assertion in order for actors that retrieve that p-assertion from
the provenance store to understand the exact nature of the transformation
applied. This is equally true for an actor state p-assertion. Documentation
styles are essentially descriptions of the types of transformations that can be
applied to a message or to the internal state of an actor. The WS-Prov-DM-
DS document [TMG+06b] presents a profile of several basic documentation
style transformations that are likely to be useful in application domains
that use process documentation. It is not intended to be exhaustive; other
profiles may be provided of alternative documentation style transformations
which may be generic or more specific in nature.

12

Page 17 of 182

WS-Prov-PQuery-XPath The provenance query protocol [MMG+06a] has
been defined, and includes the request for, algorithms to execute and re-
sult from a provenance query, as executed by a provenance query engine.
Many parts of the request document are unspecified, being dependent on
the provenance query engine implementation. This document defines an
XPath-based profile by which provenance queries can be fully specified
against process documentation that is in, or can be mapped to, XML for-
mat.

3.4 Technology Bindings

WS-Prov-SOAP: Provenance and SOAP Technology In order for p-assertions
to be created, asserting actors need to identify which process they are
making an assertion about, which requires some shared context between
asserting actors. As it is application actors that make assertions, a fur-
ther obligation is placed on them to pass context information between each
other regarding the process being executed. This would often be achieved
by putting the context information in the header of an application message
(such as a SOAP message). The WS-Prov-SOAP document [MTG+06a]
describes a specification of the p-header in the context of SOAP [Mit03]
messages.

4 Conclusion

In this document we have presented an overview of the provenance model, the
provenance lifecycle and the set of supporting specification documents that de-
scribe the model in detail. During the provenance lifecycle, the actors per-
form several roles: application actors execute processes; asserting actors create
p-assertions about these processes; and recording actors record p-assertions in
provenance stores, which allow querying actors to retrieve p-assertions. For these
functions we have provided detailed models in the family of specification doc-
uments, which also specify models for transforming documentation, distributed
provenance, security and a technology specific binding for SOAP messages. A
glossary of all the terms found in this document and the other specification doc-
uments is also available.

References

[Bur00] S. Burbeck. The tao of e-business services. Technical report, IBM
Software Group, 2000.

13

Page 18 of 182

[GLM04a] P. Groth, M. Luck, and L. Moreau. Formalising a protocol
for recording provenance in grids. In Proc. of the UK OST e-
Science second All Hands Meeting 2004 (AHM’04), Nottingham,
UK, September 2004.

[GLM04b] Paul Groth, Michael Luck, and Luc Moreau. A protocol for record-
ing provenance in service-oriented grids. In Teruo Higashino, edi-
tor, Proceedings of the 8th International Conference on Principles of
Distributed Systems (OPODIS’04), volume Lecture Notes in Com-
puter Science, pages 124–139, Grenoble, France, December 2004.
Springer-Verlag.

[GTM+06] Paul Groth, Victor Tan, Steve Munroe, Sheng Jiang, Simon Miles,
and Luc Moreau. Process Documentation Recording Protocol. Tech-
nical report, University of Southampton, June 2006.

[MGBM05] Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The
requirements of recording and using provenance in e-science exper-
iments. Technical report, University of Southampton, 2005.

[MGJ+06] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan,
and Luc Moreau. Data model for Process Documentation. Technical
report, University of Southampton, June 2006.

[MH05] M.P.Singh. and M.N. Huhns. Service-Oriented Computing: Seman-
tics, Processes, Agents. Wiley, 2005.

[Mit03] N. Mitra. Soap version 1.2 part 0: Primer.
http://www.w3.org/TR/soap12-part0/, 2003.

[MMG+06a] Simon Miles, Luc Moreau, Paul Groth, Victor Tan, Steve Munroe,
and Sheng Jiang. Provenance Query Protocol. Technical report,
University of Southampton, June 2006.

[MMG+06b] Simon Miles, Steve Munroe, Paul Groth, Sheng Jiang, Victor Tan,
John Ibbotson, and Luc Moreau. Process Documentation Query
Protocol. Technical report, University of Southampton, June 2006.

[MTG+06a] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. A SOAP Binding For Process Documentation.
Technical report, University of Southampton, June 2006.

[MTG+06b] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. WSRF Data Model Profile for Distributed Prove-
nance. Technical report, University of Southampton, June 2006.

14

Page 19 of 182

[SM03] M. Szomszor and L. Moreau. Recording and reasoning over data
provenance in web and grid services. In Int. Conf. on Ontologies,
Databases and Applications of Semantics, volume 2888 of LNCS,
2003.

[SRB06] David Snelling, Ian Robinson, and Tim Banks.
Web Services Resource Framework v1.2 OA-
SIS Standard, 1st April 2006. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsrf, 2006.

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe,
and Luc Moreau. WS Provenance Glossary. Technical report, Elec-
tronics and Computer Science, University of Southampton, 2006.

[TMG+06a] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. A Profile for Non-Repudiable Process Documen-
tation. Technical report, University of Southampton, June 2006.

[TMG+06b] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. Basic Transformation Profile for Documentation
Style. Technical report, University of Southampton, June 2006.

15

Page 20 of 182

ws-prov-dm

Authors:
Steve Munroe, U. Southampton

Paul Groth, U. Southampton
Sheng Jiang, U. Southampton
Simon Miles, U. Southampton
Victor Tan, U. Southampton

Luc Moreau, U. Southampton
John Ibbotson, IBM

Javier Vazquez, UPC

November 23, 2006

Data Model for Process
Documentation

Status of this Memo

This document provides information to the community regarding the specification
of a data model for process documentation used to describe the provenance of
data and has the status of a working draft. It does not define any standards or
technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright 2006.

Abstract

This document describes the data model for process documentation; information
describing process. It starts by describing the logical organisation of process doc-
umentation, before drilling down into the models of the different forms of process
documentation. It then describes how individual pieces of process documentation
and data items can be identified. Finally, a model of context is provided.

1

Page 21 of 182

Contents

1 Introduction 3
1.1 Goals and Requirements . 3

1.1.1 Requirements . 3
1.1.2 Non-Requirements . 4

2 Terminology and Notation 4
2.1 XML Namespaces . 4
2.2 Notational Conventions . 4
2.3 XML Schema Diagrams . 5
2.4 XPath notation . 6

3 The Process Documentation Model 6
3.1 The P-Structure . 7
3.2 Interaction Views . 8
3.3 Interaction P-Assertion Modelling 11
3.4 Identifying Interactions . 12
3.5 Actor State P-Assertion Modelling 13
3.6 Relationship P-Assertion Modelling 15
3.7 Identifying P-Assertions . 18
3.8 Identifying Data Items . 19
3.9 Interaction Contexts and the P-Header 21

4 Conclusion 22

2

Page 22 of 182

1 Introduction

According to the Oxford English Dictionary, provenance is defined as (i) the fact
of coming from some particular source or quarter; origin, derivation. (ii) the
history or pedigree of a work of art, manuscript, rare book, etc.; concr., a record
of the ultimate derivation and passage of an item through its various owners.

Provenance is already well understood in the study of fine art where it refers
to the trusted, documented history of some art object. Given that documented
history, the object attains an authority that allows scholars to understand and
appreciate its importance and context relative to other works. Art objects that
do not have a trusted, proven history may be treated with some scepticism by
those that study and view them. This same concept of provenance may also be
applied to data and information generated within computer systems. This being
so, a primary objective here is to define a representation of provenance that is
suitable for computer systems where, in this context, provenance is defined as the
process that led to that piece of data.

Applications produce data and to obtain the provenance of such data they
must be transformed into so called provenance-aware applications, so that when
they run they produce a description of their execution, called process documen-
tation.

This document presents a specification of the data model for process docu-
mentation. The approach is top down in nature, and starts by describing the
p-structure — the logical organisation of process documentation, before drilling
down into the models of the different forms of process documentation, or p-
assertions. The identification of p-assertions and data items is then described,
followed by a description of a model of context.

A full overview document is (soon to be) available that describes the vision
for the standardisation effort [TMG+06c].

1.1 Goals and Requirements

The goal of this document is to define an open, interoperable data model for
process documentation.

1.1.1 Requirements

In meeting this goal, this document must address the following requirements:

• Define the data items necessary for process documentation and their logical
organisation.

• Provide the basis for an open, interoperable set of standards.

• Provide extensibility for more sophisticated and/or currently unanticipated
scenarios.

3

Page 23 of 182

1.1.2 Non-Requirements

This document does not intend to meet the following requirements:

• Supply definitions and scope of data provenance. This is covered in [TMG+06c].

• Supply a model for the transformation of process documentation — called
documentation styles. This aspect of data provenance is covered in [TMG+06b].

• Supply a model of storing and retrieving process documentation. This
aspect of data provenance is described in [MMG+06].

• Supply a model for provenance security. This aspect of data provenance is
described in [MMG+06].

• Supply a model for provenance scalability and distribution. This aspect of
data provenance is described in [MTG+06].

2 Terminology and Notation

All definitions for the concepts and structures found within this document can
be found in [TGJ+06].

2.1 XML Namespaces

The xml Namespace uri that must be used by implementations of this specifi-
cation is: http://www.pasoa.org/schemas/version023s1/PStruct.xsd

Table 1 lists xml namespaces that are used in this specification. The choice
of any namespace prefix is arbitrary and not semantically significant.

Prefix XML Namespace Specification(s)
ps http://www.pasoa.org/schemas/version023s1/PStruct.xsd [P-Structure]
ph http://www.pasoa.org/schemas/version023s1/PHeader.xsd [P-Header]
wsa http://schemas.xmlsoap.org/ws/2004/08/addressing [WS-Addressing]
xs http://www.w3.org/2001/XMLSchema [XMLSchema]

Table 1: Prefixes and xml Namespaces used in this specification

2.2 Notational Conventions

The keywords “must ”, “mustnot ”, “required ”, “shall ”, “shallnot ”,
“should ”, “shouldnot ”, “recommended ”, “may ”, and “optional ” in
this document are to be interpreted as described in [Bra97].

4

Page 24 of 182

2.3 XML Schema Diagrams

This documents adopts a graphical notation to describe XML Schema. Figure 1
gives an example of a small xml Schema displayed as a diagram, which is now
explained with reference to the figure.

Figure 1: An example xml Schema diagram

Figure 1 defines the structure of type ts:Test. The type Test contains a
sequence of elements, which we now detail. One element in the sequence is
ts:testName, which can be any type and must occur once and only once in
an instance of ts:Test. ts:Name is followed by element ts:testNumber, which
must contain a string. The ts:testNumber element must occur at least once
and can occur as many times as needed. This is denoted by the “1..unbounded”
under the element. Finally, the sequence contains a choice between two elements,
ts:startTest and ts:stopTest, either of which must contain a date.

Below is a simple of description of each of the parts of the xml Schema
diagram format.

An element (instance) is represented by the
qualified name of the element in the box. By
default an element must occur once and only
once. Where this restriction does not hold, the
text “1..unbounded”, “0..unbounded”, “0..N”,
“1..N” (where N is an integer) appears under
the element box. The left hand number is the
minimum occurrences of the element at the po-
sition in the xml document, the right hand
number is the maximum (with “unbounded”
for no maximum).

5

Page 25 of 182

A complex type is denoted by a lightly marked
box with the qualified name of the type at the
top left. The structure of the type is given
by the elements, types and control structures
within the box.

A horizontal sequence of dots represents a se-
quence of elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

A vertical sequence of dots represents a choice
between elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

2.4 XPath notation

In addition to the XML Schema diagrams, an XPath notation [W3C99] is used
to identify each individual element in the specification along with its context, in
order to describe precisely its meaning and use.

3 The Process Documentation Model

The data model presented here represents all the necessary data structures re-
quired to represent and organise process documentation. In the model, process
documentation is organised via collections of interaction records that collectively
make up the p-structure data type. Within each interaction record is the process
documentation that relates to the interaction being recorded. Individual items
of process documentation are referred to as p-assertions , and there are three
different forms that p-assertions can take:

• interaction p-assertions,

• actor state p-assertions and,

• relationship p-assertions.

The combination of these three forms of process documentation provide the
necessary means to record process documentation. In what follows, a top-down
approach is adopted to describing the data model. Starting at the level of the
p-structure it is shown how the organisation of process documentation can be ex-
pressed. Then, the representation of each of the p-assertions is described before a
description of how p-assertions and their contents can be identified. Finally, the
model of context is described. Context refers to extra information that may be in-
cluded along with any p-assertions made about a specific interaction. This model
of process documentation is taken from the EU Provenance project [GJ+06].

6

Page 26 of 182

3.1 The P-Structure

Process documentation is recorded in order to answer subsequent provenance
queries. To facilitate this aim, a structural organisation of process documentation
is given — referred to as a p-structure. The p-structure itself is now described.
(Note that the complete schema definition of the p-structure can be found in
Appendix A.) Figure 2 shows a graphical representation of the p-structure.

Figure 2: The P-Structure

The p-structure is organised as a hierarchy in which, at the top level, is a
collection of interaction records . Each record encapsulates all the p-assertions
and identifiers related to one interaction. The choice of interaction record as the
chief item in the p-structure is derived from the idea that interactions are the core
actions of a process. Each interaction record is identified by an interaction key,
as shown in Figure 5. The interaction key distinguishes one interaction record
from all others and is provided by the sending actor.

The p-structure and its contents are further described as follows:

/ps:pstruct

This element provides a common logical structure for process documen-
tation. All subsequent elements, with the exception of the p-header, are
sub-elements of this element. The structure imposed upon process docu-
mentation is given by an unbounded sequence of interactionRecords.

/ps:pstruct/ps:interactionRecord

7

Page 27 of 182

The intent of this component is to hold all p-assertions and identifiers re-
lating to one interaction, i.e. the passing of one message from one actor
to another. The p-assertions contained within an interaction record are
grouped according to whether it was the sender or the receiver of the mes-
sage that asserted the p-assertion, where this is represented by the type
View. The full definition of View is given Section 3.2.

/ps:pstruct/ps:interactionRecord/ps:interactionKey

The intent of this component is to uniquely identify the interaction
contained in an interactionRecord, and thus also identifying the
interactionRecord. Its full definition is given in Section 3.4.

/ps:pstruct/ps:interactionRecord/ps:sender

The intent of this element is to contain the information relating to the
sender’s view of an interaction, where this is of type ps:View. The full
definition of ps:View is given Section 3.2.

/ps:pstruct/ps:interactionRecord/ps:receiver

The intent of this element is to contain the information relating the re-
ceiver’s view of an interaction, where this is of type ps:View. The full
definition of ps:View is given Section 3.2.

/ps:pstruct/ps:interactionRecord/xs:any

The intent of this component is to provide extensibility by allowing appli-
cation dependent data formats to be introduced.

The general policy for extensibility is to allow any type to be extended by
other schemas, except where explicitly restricted. Where we explicitly expect
extension, we add the any element at the end of a sequence (as above). The
any element must use namespace=“##other”. All extensions must be done in
another namespace.

3.2 Interaction Views

In the p-structure hierarchy, there are two ps:View elements under the
ps:InteractionRecord type. One ps:View contains the p-assertions from the
sender in an interaction, while the other contains those from the receiver.
ps:View has the structure shown in Figure 3: it has an asserter, which is the iden-
tity of the actor asserting a set of p-assertions, it can contain several interaction
p-assertions, several actor state p-assertions, several relationship p-assertions, and
some exposed interaction metadata. This is information that has been exposed
from within the stored p-assertions. The rationale for this element lies with re-
quirements imposed when process documentation is distributed. The data model

8

Page 28 of 182

for distributed provenance is described in detail in the profile [MTG+06]. All of
these are optional. Each p-assertion is defined by an associated model described
in Sections 3.3, 3.5 and 3.6.

Figure 3: A View in the P-Structure

The contents of View are further described as follows:

/ps:view

This element contains information relating to a view of an interaction from
an actor involved in that interaction (either as the sender or the receiver).
It contains a sequence where each element in the sequence contains the
identity of the asserting actor, a choice of one of three possible p-assertion
types that the asserting actor asserts, and an optional any Element to
provide any application dependent information.

/ps:view/ps:asserter

The intent of this component is uniquely identify the actor to which this
view belongs. This will be accomplished via the security architecture of the

9

Page 29 of 182

application. Since the way actors are identified is application specific, the
format used must be accompanied by its own namespace.

/ps:view/ps:interactionPAssertion

The intent of this component is to hold all interaction p-assertions asserted
by the actor who owns this view for this interaction. There can be an
unbounded number of occurrences of this element.

/ps:view/ps:relationshipPAssertion

The intent of this component is to to hold all relationship p-assertions
asserted by the actor who owns this view for this interaction. There can be
an unbounded number of occurrences of this element.

/ps:view/ps:actorStatePAssertion

The intent of this component is to to hold all actor state p-assertions as-
serted by the actor who owns this view for this interaction. There can be
an unbounded number of occurrences of this element.

/ps:view/ps:exposedInteractionMetaData

The intent of this component is to enable actors to make metadata about the
interaction easily available to queriers. It does not contain any information
that cannot already be found inside p-assertions about this interaction.

/ps:view/ps:exposedInteractionMetaData/ps:globalPAssertionKey

The intent of this component is to enable the p-assertion that contributed
this metadata for this interaction to be locatable. It holds the globally
unique identifier for a p-assertion. The component’s full definition is given
below in Section 3.7.

/ps:view/ps:exposedInteractionMetaData/ps:interactionMetaData

The intent of this component is to hold metadata about this interaction.
It contains a sequence of choices between two components: a tracer or an
Any Element. (Tracers are defined in Section 3.9.)

/ps:view/xs:Any

The intent of this component is to provide extensibility by allowing appli-
cation dependent data formats to be introduced.

10

Page 30 of 182

3.3 Interaction P-Assertion Modelling

Interaction p-assertions record the content of a message received or sent by the
asserting actor. There may be different ways according to which the content of
a message may be asserted: for instance, the message content may be asserted
verbatim as the asserting actor received/sent it, or an altered description may be
asserted in which, for example, sensitive or large data items within the message
are replaced with references to those copies of the data items stored elsewhere, or
are replaced with references and a digest of the data. Therefore, in modelling an
interaction p-assertion, a data structure is required in which asserting actors can
declare not only the content of the message but also the documentation style that
has been applied to it. If no change has been made between the message content
sent/received and that asserted in the p-assertion, a ‘verbatim’ documentation
style is asserted.

The data type InteractionPAssertion represents any interaction p-assertion
and is depicted in Figure 4. A p-assertion consists of three pieces of information:
local p-assertion identifier, localPAssertionId; an identifier specifying the doc-
umentation style applied to the message content, documentation style; and the
message content itself, shown as ‘any’ as it is entirely application-dependent and
so no generic data structure can be specified for it. For example, the message
content may be a soap or a corba message.

Figure 4: Model for an interaction p-assertion

The model of interaction p-assertions is further described as follows:

/ps:interactionPAssertion

The root element of an interaction p-assertion. It contains elements to
identify the p-assertion, describe the kinds of transformations made to the
interaction’s message content — or the documentation style, and the mes-
sage content itself.

11

Page 31 of 182

/ps:interactionPAssertion/ps:localPAssertionId

The intent of this component is to uniquely identify the interaction p-
assertion within the context of a given interaction. The value of this com-
ponent must be either an integer, string or URI.

/ps:interactionPAssertion/ps:documentationStyle

The intent of this component is to uniquely identify the Documentation
style used to transform the content of the message to which this p-assertion
refers, and is of the XML Schema type anyURI. Thus, for any documentation
style a unique URI must be provided to identify it.

/ps:interactionPAssertion/ps:content

The intent of this component is to contain the, possibly modified, contents
of the message that this interaction p-assertion is documenting, where mod-
ifications are made according to one or more documentation styles. In order
to accommodate application dependent message content styles, this com-
ponent includes an unbounded sequence of any Element.

/ps:interactionPAssertion/ps:content/xs:any

The intent of this component is to provide extensibility by allowing appli-
cation dependent data formats to be introduced.

3.4 Identifying Interactions

Every p-assertion is made in the context of an interaction, thus an interaction
p-assertion documents the receipt or sending of the message constituting the in-
teraction, an actor state p-assertion asserts the state of an actor at a specific
instant during an interaction and a relationship p-assertion relates one interac-
tion to other interactions. In order to discover the provenance of some piece of
information, p-assertions associated to that information must be extracted from
the p-structure. Since p-assertions are organised in terms of interactions, it is nec-
essary to be able to identify which interactions contain the required p-assertions.

In Figure 5, the model for referring to a single interaction using an
interactionKey is shown. This key is made up of three parts: the address
from which the message came, the messageSource, the address to which the
message was sent, the messageSink and an identifier that specifies a particular
interaction between these two addresses, the interactionId.

The model of interaction keys is further described as follows:

/ps:interactionKey

This is the root element of the ps:InteractionKey type. Within this
element is a sequence of three components that together uniquely identify
an interaction.

12

Page 32 of 182

Figure 5: Model for identifying an interaction

/ps:interactionKey/ps:messageSource

The intent of this component is to identify from which location (e.g. port
address) the message constituting this interaction came from. The type
of this component is an wsa:EndPointReference type defined in [WS-
Addressing].

/ps:interactionKey/ps:messageSink

The intent of this component is to identify to which location (e.g. port
address) the message constituting this interaction has been sent to. The
type of this component is an wsa:EndPointReference type defined in [WS-
Addressing].

/ps:interactionKey/ps:interactionId

The intent of this component is to uniquely identify an interaction between
the above given messageSource and messageSink using the [XMLSchema]
type anyURI.

3.5 Actor State P-Assertion Modelling

Actor state p-assertions are assertions made by an actor about its internal state
in the context of a specific interaction. Each actor in an interaction sends or
receives a message, so an actor state p-assertion asserts something about the
state of the actor just before or just after it sent or received the message. For
example, a service with an incoming message buffer may assert the state of its
buffer just before and after receiving a message. Often, after an actor receives
a given message, say M1, it executes a process (that M1 has triggered) and,
similarly, before sending a given message, say M2, it executes some process (that
resulted in M2). Therefore, a common subset of actor state p-assertions give
details of the execution that took place just after receiving or just before sending
a message, or may assert the computational resources allocated to an execution.

13

Page 33 of 182

For example, the actor state may name the workflow within which the interaction
occurred.

The data type ActorStatePAssertion is defined to represent any actor state
p-assertion and depict its structure in Figure 6. The p-assertion consists of three
pieces of information: a local p-assertion identifier, localPAssertionId, an op-
tional documentation style, and the actor state document content itself, shown
as ‘any’ as it is entirely application-dependent and so no generic data structure
can be specified for it.

Figure 6: Model for an actor state p-assertion

The model of actor state p-assertion is further described as follows:

/ps:actorStatePAssertion

The root element of an actor state p-assertion. It contains elements to
identify the p-assertion, describe the kinds of transformations made to the
actor’s state — or the documentation style, and the actor state content
itself.

/ps:actorStatePAssertion/ps:localPAssertionId

The intent of this component is to uniquely identify the actor state p-
assertion within the context of a given interaction. The value of this com-
ponent must be either an integer, string or URI.

/ps:actorStatePAssertion/ps:documentationStyle

The intent of this component is to uniquely identify the Documentation
style used to transform the representation of the actor’s state to which this
p-assertion refers, and is of the XML Schema type anyURI. Thus, for any
documentation style a unique URI must be provided to identify it.

14

Page 34 of 182

/ps:actorStatePAssertion/ps:content

The intent of this component is to contain a, possibly modified, representa-
tion parts of the actor’s state that this actor state p-assertion is document-
ing, where modifications are made according to one or more documentation
styles. In order to accommodate application dependent actor state content,
this component include an unbounded sequence of any Element.

/ps:actorStatePAssertion/ps:content/xs:any

The intent of this component is to provide extensibility by allowing appli-
cation dependent actor state data formats to be introduced.

3.6 Relationship P-Assertion Modelling

Relationship p-assertions allow uni-directional relationships between both mes-
sages and data to be expressed. Relationship p-assertions are modelled as one-
to-many triples between data or messages, where the domain of a relationship is
called the subject and the range is the set of objects. The triple consists of a sub-
ject identifier (subjectId), a relation, and several object identifiers (objectIds).
The model for relationship p-assertions is shown in Figure 7.

Typically, a relationship p-assertion is expressing a causal relationship, where
the subject of the relationship is a data item in a sent message, i.e. an output,
and the objects are entities in messages received by the same actor or data items
in its state, i.e. inputs, where the inputs had a caused the output to be as it is. A
subjectId identifies a data item or message within the asserting actor’s view of
an interaction. Therefore, the subjectId is limited to identifying one message or
data item within the context of the particular interaction. An objectId identifies
any data item, message or actor state. It accomplishes this by referring to the
interaction, the view in that interaction, the local p-assertion identifier and, if
referring to a data item, an additional data accessor. An objectId also contains
a parameter name, which specifies which particular input the object was used
as in the operation that transformed the objects of the relation into the subject,
e.g. in a ‘division’ operation the parameter name may identify a ‘dividend’ or a
‘divisor’ concept. Similarly, the subjectId can have a parameter name specifying
which output of the operation the subject refers to.

The model of relationship p-assertion is further described as follows:

/ps:relationshipPAssertion

The root element of a relationship p-assertion. It contains a sequence of four
components that together provide the information necessary to represent
a relationship p-assertion: the local p-assertion id for this relationship p-
assertion, a subject identifier, a relation, and a sequence of object identifiers.

15

Page 35 of 182

Figure 7: Relationship p-assertion model

16

Page 36 of 182

/ps:relationshipPAssertion/ps:localPAssertionId

The intent of this component is to uniquely identify the relationship p-
assertion within the context of a given interaction. The value of this com-
ponent must be either an integer, string or URI.

/ps:relationshipPAssertion/ps:subjectId

The intent of this component is to provide a unique means of identifying
a data item or message acting as the subject of the asserted relationship
p-assertion, i.e. the output of the relation that this relationship p-assertion
is documenting. It contains three components, which together provide the
necessary information to identify the data item or message that acts as the
subject within this relationship p-assertion.

/ps:relationshipPAssertion/ps:subjectId/ps:localPAssertionId

The intent of this component is to uniquely identify, within an interaction
record, the p-assertion within which the data item or message that repre-
sents the subject of this relationship p-assertion resides. The value of this
component must be either an integer, string or URI.

/ps:relationshipPAssertion/ps:subjectId/ps:dataAccessor

The intent of this component is to provide an application dependent mech-
anism for identifying the subject of a relation within the above identified p-
assertion, if that subject is a data item. Thus, this component is optional,
and its use is dependent upon the subject of the relationship p-assertion
being a data item.

/ps:relationshipPAssertion/ps:subjectId/ps:parameterName

The intent of this component is to identify the subject role that a data item
or message plays in this relationship p-assertion. The names of subject roles
must be referred to via URI’s, and thus this component is of type AnyURI.

/ps:relationshipPAssertion/ps:relation

The intent of this component is to provide a means to name the relation of
this relationship p-assertion, where this takes the type AnyURI.

/ps:relationshipPAssertion/ps:objectId

The intent of this component is to identify the object(s) of this relationship
p-assertion, i.e. the inputs to the above identified relation. It contains a
sequence of six components described below.

17

Page 37 of 182

/ps:relationshipPAssertion/ps:objectId/ps:interactionKey

The intent of this component is to uniquely identify the interaction within
which the this relation object resides. The full definition of interactionKey
is given above in Section 3.4.

/ps:relationshipPAssertion/ps:objectId/ps:viewKind

The intent of this component is to identify the view that the actor as-
serting this relationship p-assertion has on the above identified interaction
within which the object of this relation resides. This view can be either
SenderViewKind or ReceiverViewKind, where these are extensions to the
abstract type ViewKind (see Section 3.7).

/ps:relationshipPAssertion/ps:objectId/ps:localPAssertionId

The intent of this component is to uniquely identify the p-assertion within
which the data item or message that represents an object of this relationship
p-assertion resides, given the above identified interaction. The value of this
component must be either an integer, string or URI.

/ps:relationshipPAssertion/ps:objectId/ps:dataAccessor

The intent of this component is to provide an application dependent mech-
anism for identifying an object of the above relation within the above iden-
tified p-assertion, if that object is a data item. Thus, this component is
optional, and its use is dependent upon the object of the relationship
p-assertion being a data item.

/ps:relationshipPAssertion/ps:objectId/ps:parameterName

The intent of this component is to identify the object role that a data item
or message plays in this relationship p-assertion. The names of object roles
must be referred to via URI’s, and thus this component is of type AnyURI.

/ps:relationshipPAssertion/ps:objectId/xs:any

The intent of this component is to allow application dependent data formats
to be introduced.

3.7 Identifying P-Assertions

Earlier it was shown how to identify the interaction about which an assertion
is being made, additionally it was also shown how every p-assertion has its own
identifier: the localPassertionIidentifier. Each p-assertion made by one
asserting actor about one interaction must have a different local p-assertion
identifier. With both interaction identifiers and local p-assertion identifiers it is
possible to construct a global p-assertion key as shown in Figure 8. A global

18

Page 38 of 182

p-assertion key consists of an interaction key, whether the sender or receiver in
the interaction made the assertion (the viewKind) and the local p-assertion id.
A global p-assertion key uniquely identifies a p-assertion.

Figure 8: Global P-Assertion Key

The model of a global p-assertion key is further described as follows:

/ps:globalPAssertionKey

The root element of a global p-assertion key. This element contains a se-
quence of three components that together uniquely identify a p-assertion:
an interaction key, a view kind and a local p-assertion id.

/ps:globalPAssertionKey/ps:interactionKey

The intent of this component is to uniquely identify the interaction within
which this p-assertion resides. The full definition of interactionKey is
given in Section 3.4.

/ps:globalPAssertionKey/ps:viewKind

The intent of this component is to identify the view that the actor that
asserted this p-assertion had on the above identified interaction. This view
can be either SenderViewKind or ReceiverViewKind.

/ps:globalPAssertionKey/ps:localPAssertionId

The intent of this component is to uniquely identify the p-assertion within
the context of the above identified interaction. The value of this component
must be either an integer, string or URI.

3.8 Identifying Data Items

In addition to identifying p-assertions, it is necessary to be able to identify indi-
vidual data items within those p-assertions in order to answer provenance queries.
A p-assertion data item is part, or all, of a p-assertion, and can be identified by a

19

Page 39 of 182

pAssertionDataKey. A pAssertionDataKey extends a globalPAssertionKey,
identifying the p-assertion containing the data item, with a dataAccessor, iden-
tifying the location of the data item within the p-assertion. The model for a
p-assertion data key is shown in Figure 9.

Figure 9: P-Assertion Data Key

The model of p-assertion data key is further described as follows:

/ps:pAssertionDataKey

The root element of a p-assertion data key. It contains four components that
together uniquely identify a data item within a p-assertion: an interaction
key, a view kind, a local p-assertion key and a data accessor. The element
extends the ps:globalPAssertionKey.

/ps:pAssertionDataKey/ps:interactionKey

The intent of this component is to uniquely identify the interaction within
which the p-assertion that contains the data item resides. The full definition
of interactionKey is given in Section 3.4.

/ps:pAssertionDataKey/ps:viewKind

The intent of this component is to identify the view that the actor that as-
serted the p-assertion containing the data item had on the above identified
interaction. This view can be either SenderViewKind or ReceiverViewKind,
where these are extensions to the abstract type ViewKind (see Section 3.2).

/ps:pAssertionDataKey/ps:localPAssertionId

20

Page 40 of 182

The intent of this component is to uniquely identify the p-assertion con-
taining the data item within the context of the above identified interaction.
The value of this component must be either an integer, string or URI.

/ps:pAssertionDataKey/ps:dataAccessor

The intent of this component is to provide an application dependent mech-
anism for identifying a data item within the above identified p-assertion.

/ps:pAssertionDataKey/ps:dataAccessor/xs:any

The intent of this component is to provide extensibility by allowing appli-
cation dependent data formats to be introduced.

3.9 Interaction Contexts and the P-Header

Application actors must exchange provenance-specific context information related
to particular interactions for the process documentation to be usable by querying
actors. For example, both sender and receiver must use the same interaction key
for the same interaction so that their assertions can be matched. Context infor-
mation can be passed independently in messages created specifically for passing
such information, or as extra data in existing messages.

In the former case, the context information conforms to the interaction con-
text structure shown in Figure 10. An interaction context contains an interaction
key, a viewKind to indicate the particular view the asserter of this information
has on the interaction, and any number of items of interaction metadata, which
are contextual information regarding the identified interaction. Examples of in-
teraction metadata include tracers and possibly links to other provenance stores
in the case of distributed provenance (see the profile document [MTG+06] for a
specific way of representing distributed provenance).

The model of an interaction context is further described as follows:

/ps:interactionContext

The root element of interaction context. It contains a sequence of two
components that together provide information about the context of an in-
teraction: the interaction key and a set of interactionMetadata.

/ps:interactionContext/ps:interactionKey

The intent of this component is to uniquely identify the interaction to which
this context applies. The full definition of interactionKey is given above
in Section 3.4.

/ps:interactionContext/ps:viewKind

21

Page 41 of 182

Figure 10: Model of an Interaction Context.

The intent of this component is to identify the view that the actor asserting
this information has on the above identified interaction. This view can be
either SenderViewKind or ReceiverViewKind, where these are extensions
to the abstract type ViewKind (see Section 3.7).

/ps:interactionContext/ps:interactionMetaData

The intent of this component is to hold metadata about the above identified
interaction. It contains a sequence of choices between two components: a
tracer or an AnyElement.

/ps:interactionContext/ps:interactionMetaData/ps:tracer

The intent of this component is to provide a means of associating an in-
teraction with other, related interactions using shared information. All
interactions that are related share the same unique piece of information —
referred to as a tracer, represented by the XML Schema type anyURI.

/ps:interactionContext/ps:interactionMetaData/xs:any

The intent of this component is to provide extensibility by allowing an
unbounded number of application dependent data formats to be introduced.

4 Conclusion

In this document, a data model for process documentation is described, and
a model for how process documentation can be organised and how individual

22

Page 42 of 182

pieces of process documentation — that is, p-assertions, and their contents can
be expressed is presented. Also provided is a model of interaction contexts and
the p-header, in which such context information can be passed between actors.
Combining these models together, a complete specification for an open process
documentation data model is provided. This document exists as part of a series
of related documents that together form the basis of a proposal towards a stan-
dardisation process for data provenance. Other documents in the series present
other aspects of data provenance such as documentation styles [TMG+06b], se-
curity [TMG+06a], scalability and distribution [MTG+06], provenance queries
[MMG+06] and recording [GTM+06] and overall vision [TMG+06c].

23

Page 43 of 182

Appendix A

The following XML document describes the p-structure types and elements used
in this document.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns:ps="http://www.pasoa.org/schemas/version023s1/PStruct.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

attributeFormDefault="unqualified" elementFormDefault="qualified"

targetNamespace="http://www.pasoa.org/schemas/version023s1/PStruct.xsd">

<xs:import

namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"

schemaLocation="./wsaddressing.xsd"/>

<xs:annotation>

<xs:documentation>

The P-Structure. This is a logical view of the contents of a provenance store.

The P-Structure contains a set of interaction records that document interactions

between actors.

Author: Paul Groth

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</xs:documentation>

</xs:annotation>

<!-- We define the global elements of the p-struture here so that

They can be referenced by external schemas. Below we define

the types of the p-structure. The prefix ps: refers to this

document. -->

<xs:element name="pstruct" type="ps:PStructure">

<xs:annotation>

<xs:documentation>

(Root Element Start Here) An instance of the

p-structure. Each instance of the p-structure contains a

set of interaction records.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="interactionRecord" type="ps:InteractionRecord">

<xs:annotation>

<xs:documentation>

An interaction record describes the client and service

view of a particular interaction. An interaction record

is identified by an interaction key.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="view" type="ps:View">

<xs:annotation>

<xs:documentation>

A view of an interaction by an actor.

</xs:documentation>

</xs:annotation>

</xs:element>

24

Page 44 of 182

<xs:element name="interactionKey" type="ps:InteractionKey">

<xs:annotation>

<xs:documentation>

An interaction key contains a message source,

a message sink, and an interaction id.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="messageSource" type="wsa:EndpointReferenceType">

<xs:annotation>

<xs:documentation>

The source of the message within the sender.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="messageSink" type="wsa:EndpointReferenceType">

<xs:annotation>

<xs:documentation>

The sink of the message within the receiver.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="interactionId" type="xs:anyURI">

<xs:annotation>

<xs:documentation>

A URI that uniquely identifies this interaction .

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="asserter" type="ps:Asserter">

<xs:annotation>

<xs:documentation>

Each view (either client or service) comes from a

particular actor. The actor that asserts p-assertion

in a particular view is termed the asserter. The identity

of the asserter is documented in the corresponding view inside

the interaction record.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="numberOfExpectedAssertions" type="ps:NumberOfExpectedAssertions">

<xs:annotation>

<xs:documentation>

The number of expected p-assertions to be contained

within a view as documented by the asserting actor.

</xs:documentation>

</xs:annotation>

</xs:element>

<!-- The following elements define the three types of p-assertions. -->

<xs:element name="interactionPAssertion" type="ps:InteractionPAssertion">

<xs:annotation>

<xs:documentation>

Assertion as to the content of an interaction.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="actorStatePAssertion" type="ps:ActorStatePAssertion">

25

Page 45 of 182

<xs:annotation>

<xs:documentation>

Information supplied by an actor about its state in the

context of this interaction . Examples include the

script that was used in running a service or the time

when an invocation was sent/received.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="relationshipPAssertion" type="ps:RelationshipPAssertion">

<xs:annotation>

<xs:documentation>

Describes a relationship between a p-assertion recorded

in this view and another p-assertion made by the

asserting actor. This can be seen as a triple: subject

identifier, relation, object identifier.

</xs:documentation>

</xs:annotation>

</xs:element>

<!-- End P-assertion defintions -->

<xs:element name="viewKind" type="ps:ViewKind">

<xs:annotation>

<xs:documentation>

Whether a view is from the sender or receiver.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="localPAssertionId" type="ps:LocalPAssertionId">

<xs:annotation>

<xs:documentation>

Uniquely identifies a p-assertion within a view.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="dataAccessor" type="ps:DataAccessor">

<xs:annotation>

<xs:documentation>

An application dependent mechanism for referencing a

piece of data within a p-assertion.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="parameterName" type="xs:anyURI">

<xs:annotation>

<xs:documentation>

The parameter name of a data item referenced

in a relationship p-assertion.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="documentationStyle" type="xs:anyURI">

<xs:annotation>

<xs:documentation>

The style of documentation used when recording

an interaction p-assertion.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="pAssertionDataKey" type="ps:PAssertionDataKey"/>

26

Page 46 of 182

<xs:element name="objectId" type="ps:ObjectId"/>

<xs:element name="relation" type="xs:anyURI"/>

<xs:element name="globalPAssertionKey" type="ps:GlobalPAssertionKey"/>

<xs:element name="interactionMetaData" type="ps:InteractionMetaData"/>

<xs:element name="interactionContext" type="ps:InteractionContext"/>

<xs:element name="senderViewKind" type="ps:SenderViewKind"/>

<xs:element name="exposedInteractionMetaData" type="ps:ExposedInteractionMetaData"/>

<!-- Type Definitions -->

<xs:complexType name="InteractionKey">

<xs:sequence>

<xs:element ref="ps:messageSource"/>

<xs:element ref="ps:messageSink"/>

<xs:element ref="ps:interactionId"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PStructure">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" ref="ps:interactionRecord"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="InteractionRecord">

<xs:sequence>

<xs:element ref="ps:interactionKey" />

<xs:element minOccurs="0" name="sender" type="ps:View">

<xs:annotation>

<xs:documentation>

The senders’s view of the interaction .

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element minOccurs="0" name="receiver" type="ps:View">

<xs:annotation>

<xs:documentation>

The receiver’s view of the interaction.

WARNING!!! In future revisions the receiver view

may not be allowed to include relationship

p-assertions. If you have an example of the

usage of relationship p-assertions in this view,

please contact the authors of the schema.

Thanks!

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:any namespace="##other" processContents="lax"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Asserter">

<xs:sequence>

<xs:any namespace="##other" maxOccurs="unbounded"

minOccurs="0" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Asserter">

27

Page 47 of 182

<xs:sequence>

<xs:any namespace="##other" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="NumberOfExpectedAssertions">

<xs:restriction base="xs:positiveInteger"/>

</xs:simpleType>

<!-- Following the WS-Security spec, we allow any type of identiification -->

<xs:complexType name="View">

<xs:sequence>

<xs:element ref="ps:asserter" />

<xs:choice maxOccurs="unbounded" minOccurs="0">

<xs:element maxOccurs="unbounded" minOccurs="0"

ref="ps:interactionPAssertion" />

<xs:element maxOccurs="unbounded" minOccurs="0"

ref="ps:relationshipPAssertion" />

<xs:element maxOccurs="unbounded" minOccurs="0"

ref="ps:actorStatePAssertion" />

<xs:element maxOccurs="unbounded" minOccurs="0"

ref="ps:exposedInteractionMetaData"/>

</xs:choice>

<xs:any namespace="##other" processContents="lax"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="RelationshipPAssertion">

<xs:sequence>

<xs:element ref="ps:localPAssertionId"/>

<xs:element name="subjectId">

<xs:complexType>

<xs:sequence>

<xs:element ref="ps:localPAssertionId"/>

<xs:element ref="ps:dataAccessor" minOccurs="0" />

<xs:element ref="ps:parameterName"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element ref="ps:relation"/>

<xs:element maxOccurs="unbounded" ref="ps:objectId"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="GlobalPAssertionKey">

<xs:sequence>

<xs:element ref="ps:interactionKey"/>

<xs:element ref="ps:viewKind"/>

<xs:element ref="ps:localPAssertionId"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PAssertionDataKey">

<xs:complexContent>

<xs:extension base="ps:GlobalPAssertionKey">

<xs:sequence>

<xs:element minOccurs="0" ref="ps:dataAccessor"/>

</xs:sequence>

28

Page 48 of 182

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="InteractionPAssertion">

<xs:sequence>

<xs:element maxOccurs="1" minOccurs="1" ref="ps:localPAssertionId"/>

<xs:element maxOccurs="1" minOccurs="1" ref="ps:documentationStyle"/>

<xs:element maxOccurs="1" minOccurs="1" name="content" type="ps:Content"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ActorStatePAssertion">

<xs:sequence>

<xs:element maxOccurs="1" minOccurs="1" ref="ps:localPAssertionId"/>

<xs:element maxOccurs="1" minOccurs="0" ref="ps:documentationStyle"/>

<xs:element maxOccurs="1" minOccurs="1" name="content" type="ps:Content"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="LocalPAssertionId">

<xs:union memberTypes="xs:long xs:string xs:anyURI"/>

</xs:simpleType>

<xs:complexType name="ViewKind" abstract="true">

<xs:annotation>

<xs:documentation>

Instance documents must select something that is derived

</xs:documentation>

</xs:annotation>

</xs:complexType>

<xs:complexType name="SenderViewKind">

<xs:complexContent>

<xs:restriction base="ps:ViewKind"></xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ReceiverViewKind">

<xs:complexContent>

<xs:restriction base="ps:ViewKind"></xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ObjectId">

<xs:complexContent>

<xs:extension base="ps:PAssertionDataKey">

<xs:sequence>

<xs:element ref="ps:parameterName"/>

<xs:any namespace="##other" processContents="lax"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="DataAccessor">

<xs:sequence>

<xs:any maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Content">

<xs:sequence>

<xs:any namespace="##any" maxOccurs="unbounded" minOccurs="0"/>

29

Page 49 of 182

</xs:sequence>

</xs:complexType>

<xs:complexType name="InteractionMetaData">

<xs:sequence>

<xs:choice maxOccurs="unbounded">

<xs:element name="tracer" type="xs:anyURI"/>

<xs:any namespace="##other" maxOccurs="unbounded" minOccurs="0"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

<xs:complexType name="InteractionContext">

<xs:sequence>

<xs:element ref="ps:interactionKey" />

<xs:element ref="ps:viewKind"/> <!-- View Kind of the actor who created the metadata -->

<xs:element ref="ps:interactionMetaData"

maxOccurs="unbounded" minOccurs="0" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="ExposedInteractionMetaData">

<xs:sequence>

<xs:element ref="ps:globalPAssertionKey"/>

<xs:element ref="ps:interactionMetaData"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

30

Page 50 of 182

Appendix B
The following illustrates the p-header types and elements used in this document.

<?xml version="1.0" encoding="UTF-8"?> <xs:schema

targetNamespace="http://www.pasoa.org/schemas/version023s1/PHeader.xsd"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ph="http://www.pasoa.org/schemas/version023s1/PHeader.xsd"

xmlns:ps="http://www.pasoa.org/schemas/version023s1/PStruct.xsd">

<xs:annotation>

<xs:documentation>

The PHeader schema

Author: Paul Groth

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</xs:documentation>

</xs:annotation>

<xs:import namespace="http://www.pasoa.org/schemas/version023s1/PStruct.xsd"

schemaLocation="./PStruct.xsd"/>

<xs:element name="pheader" type="ph:PHeader"/>

<xs:complexType name="PHeader">

<xs:annotation>

<xs:documentation>Provenance Specific Header Information</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element ref="ps:interactionKey" maxOccurs="1" minOccurs="1" />

<xs:element ref="ps:interactionMetaData" maxOccurs="unbounded" minOccurs="0"/>

<xs:element ref="ps:interactionContext" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

31

Page 51 of 182

References

[Bra97] Scott Bradner. Key words for use in RFCs to indicate requirement levels.
http://www.ietf.org/rfc/rfc2119.txt, 1997.

[GJ+06] Paul Groth, Sheng Jiang, , Simon Miles, Steve Munroe, Victor Tan,
Sofia Tsasakou, and Luc Moreau. An Architecture for Provenance Sys-
tems. Technical report, Electronics and Computer Science, University of
Southampton, 2006.

[GTM+06] Paul Groth, Victor Tan, Steve Munroe, Sheng Jiang, Simon Miles, and
Luc Moreau. Process Documentation Recording Protocol. Technical re-
port, University of Southampton, June 2006.

[MMG+06] Simon Miles, Steve Munroe, Paul Groth, Sheng Jiang, Victor Tan, John
Ibbotson, and Luc Moreau. Process Documentation Query Protocol. Tech-
nical report, University of Southampton, June 2006.

[MTG+06] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, and
Luc Moreau. WSRF Data Model Profile for Distributed Provenance. Tech-
nical report, University of Southampton, June 2006.

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, and
Luc Moreau. WS Provenance Glossary. Technical report, Electronics and
Computer Science, University of Southampton, 2006.

[TMG+06a] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and
Luc Moreau. A Profile for Non-Repudiable Process Documentation. Tech-
nical report, University of Southampton, June 2006.

[TMG+06b] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and
Luc Moreau. Basic Transformation Profile for Documentation Style. Tech-
nical report, University of Southampton, June 2006.

[TMG+06c] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and
Luc Moreau. The Provenance Standardisation Vision. Technical report,
University of Southampton, June 2006.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation
16 November 1999. http://www.w3.org/TR/xpath, 1999.

32

Page 52 of 182

ws-prov-rec

Authors:
Paul Groth, U. Southampton

Simon Miles, U. Southampton
Victor Tan, U. Southampton

John Ibbotson, IBM
Luc Moreau, U. Southampton

August 24, 2006

The P-assertion Recording
Protocol

Status of this Memo

This document provides information to the community regarding the specification
of a protocol for recording process documentation into a provenance store and
has the status of a working draft. The document does not define any standards
or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright 2006.

Abstract

Related documents [MGJ+06, TMG+06] define schemas to be used for documen-
tation about the execution of a process, process documentation, and introduce
a provenance store, a type of Web Service with the capability for storing and
giving access to process documentation. In particular, process documentation
has a defined schema, the p-structure, which clients use when creating process
documentation to be recorded. In this document, we specify an interface, the P-
assertion Recording Protocol (PReP) [GLM04], by which a recording actor can
communicate with a provenance store in order to record process documentation.
This primarily takes the form of an abstract WSDL interface defining messages
to be accepted and produced by a provenance store.

1

Page 53 of 182

Contents

1 Introduction 3
1.1 Goals and Requirements . 3

1.1.1 Requirements . 3
1.1.2 Non-Requirements . 3

2 Terminology and Notation 3
2.1 XML Namespaces . 3
2.2 Notational Conventions . 4
2.3 XML Schema Diagrams . 4
2.4 XPath notation . 5

3 Recording Process Documentation 5
3.1 Request . 6
3.2 Behaviour . 8
3.3 Acknowledgements . 8
3.4 Faults . 10

4 Security Considerations 10
4.1 Securing Message Exchanges . 10
4.2 Securing Provenance Store Contents 10

5 Conclusion 11

A Process Documentation Record Schema 12

B Process Documentation Record WSDL 14

2

Page 54 of 182

1 Introduction

Every provenance store supplies a Web Service interface for recording process
documentation. It has a single operation, record, that takes Record document
as input and returns an acknowledgement as result. This document defines the
schema for the request and acknowledgement messages. The WSDL 1.1 descrip-
tion of the interface is given in Appendix B.

1.1 Goals and Requirements

The goal of this document is to define a Web Service interface, the P-assertion
Recording Protocol (PReP), for recording process documentation into a prove-
nance store.

1.1.1 Requirements

In meeting this goal, this document must address the following requirements:

• Define the schema of the record request message sent to the provenance
store.

• Define the behaviour of a provenance store on receiving a record request.

• Define the schema of the acknowledgement message returned by the prove-
nance store.

1.1.2 Non-Requirements

This document does not specify any properties or guarantees that the protocol
may have. Such a specification is left to an abstract definition of the messages
required for recording process documentation [GLM04]. This document also does
not define the storage format, medium, or technology that a provenance store
uses.

2 Terminology and Notation

All definitions for the concepts and structures found within this document can
be found in [TGJ+06].

2.1 XML Namespaces

The xml Namespace uri that must be used by implementations of this specifica-
tion is: http://www.pasoa.org/schemas/version023s1/record/PRecord.xsd

Table 1 lists xml namespaces that are used in this specification. The choice
of any namespace prefix is arbitrary and not semantically significant.

3

Page 55 of 182

Prefix XML Namespace Specification(s)
pr http://www.pasoa.org/schemas/version023s1/record/PRecord.xsd [PRecord]
ps http://www.pasoa.org/schemas/version023s1/PStruct.xsd [P-Structure]
xs http://www.w3.org/2001/XMLSchema [XMLSchema]

Table 1: Prefixes and xml Namespaces used in this specification

2.2 Notational Conventions

The keywords “must ”, “mustnot ”, “required ”, “shall ”, “shallnot ”,
“should ”, “shouldnot ”, “recommended ”, “may ”, and “optional ” in
this document are to be interpreted as described in [Bra97].

2.3 XML Schema Diagrams

This document adopts a graphical notation to describe XML Schema. Figure 1
gives an example of a small xml Schema displayed as a diagram, which is now
explained with reference to the figure.

Figure 1: An example xml Schema diagram

Figure 1 defines the structure of type ts:Test. The type Test contains a
sequence of elements, which we now detail. One element in the sequence is
ts:testName, which can be any type and must occur once and only once in
an instance of ts:Test. ts:Name is followed by element ts:testNumber, which
must contain a string. The ts:testNumber element must occur at least once
and can occur as many times as needed. This is denoted by the “1..unbounded”
under the element. Finally, the sequence contains a choice between two elements,
ts:startTest and ts:stopTest, either of which must contain a date.

Below is a simple of description of each of the parts of the xml Schema
diagram format.

4

Page 56 of 182

An element (instance) is represented by the
qualified name of the element in the box. By
default an element must occur once and only
once. Where this restriction does not hold, the
text “1..unbounded”, “0..unbounded”, “0..N”,
“1..N” (where N is an integer) appears under
the element box. The left hand number is the
minimum occurrences of the element at the po-
sition in the xml document, the right hand
number is the maximum (with “unbounded”
for no maximum).

A complex type is denoted by a lightly marked
box with the qualified name of the type at the
top left. The structure of the type is given
by the elements, types and control structures
within the box.

A horizontal sequence of dots represents a se-
quence of elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

A vertical sequence of dots represents a choice
between elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

2.4 XPath notation

In addition to the XML Schema diagrams, an XPath notation [W3C99] is used
to identify each individual element in the specification along with its context, in
order to describe precisely its meaning and use.

3 Recording Process Documentation

We specify below the request document schema, provenance store behaviour and
acknowledgement document schema for recording process documentation. The
full schema document, in which request and acknowledgement message structures
are defined, is given in Appendix A. The WSDL 1.1 description of the interface
taking and producing these messages is given in Appendix B. These schemas
are based on those defined in the p-structure data model [MGJ+06], therefore, a
familiarity with that document and the concepts it defines is assumed.

5

Page 57 of 182

3.1 Request

A process documentation record request is a message sent by a recording actor
to a provenance store that contains process documentation to be stored by the
provenance store. It is instantiated as a document conforming to the schema
depicted in Figure 2.

Figure 2: Process Documentation Record Request

One feature of the request message is to allow for bulk recording of multiple
p-assertions and other associated information. For example, an actor may wish
to record p-assertions at a time when network traffic is low or when the actor is
not busy performing other tasks. Therefore, multiple pieces of information, which
we call content, can be recorded about different interactions at the same time.
Allowing content to be bundled together gives greater flexibility to the actor.

/pr:record

This element contains a record request.

/pr:record/pr:identifiedContent

This element is a container that associates a content element with the View
that the content belongs to. There can be multiple pr:identifiedContent
elements within a record request.

/pr:record/pr:identifiedContent/ps:interactionKey

This element identifies the key of the InteractionRecord that the content
belongs to.

6

Page 58 of 182

/pr:record/pr:identifiedContent/ps:viewKind

This element is the name of the View within the InteractionRecord that
the content belongs to.

/pr:record/pr:identifiedContent/ps:asserter

This element is the identity of the asserter of the content.

/pr:record/pr:identifiedContent/pr:content

This element contains the information being recorded. This element is
defined as a choice between the elements defined in Figure 3. This is to
prevent any incorrectly typed information from being recorded. There can
be multiple content elements within one pr:identifiedContent element.

Figure 3: Content element definition

/pr:record/pr:identifiedContent/pr:content/ps:interactionPAssertion

An interaction p-assertion.

/pr:record/pr:identifiedContent/pr:content/ps:actorStatePAssertion

An actor state p-assertion.

/pr:record/pr:identifiedContent/pr:content/ps:relationshipPAssertion

A relationship p-assertion.

7

Page 59 of 182

/pr:record/pr:identifiedContent/pr:content/ps:exposedInteractionMetaData

Some exposed interaction metadata.

/pr:record/pr:identifiedContent/pr:content/pr:submissionFinished

This element allows an actor to record how many p-assertions it expects to
record in total. This allows querying actors to determine whether or not
an actor is finished recording p-assertions.

3.2 Behaviour

On receiving a record message, a provenance store must store the contents of
the message. The provenance store must return an acknowledgement, which may
be sent synchronously or asynchronously depending on the underlying trans-
port mechanism being used between the client and the provenance store. The
provenance store must make the contents of the message available through the
navigation of the p-structure via some query interface.

3.3 Acknowledgements

A record acknowledgement is sent by a provenance store to the actor that issued
the corresponding record request. It is a document conforming to the schema
depicted in Figure 4. Depending on the transport mechanism being used either
a synchronous or asynchronous acknowledgement may be returned. The schema
for the acknowledgement is defined here.

/pr:recordAck

This element contains a record acknowledgement. Each pr:identifiedContent

element recorded has a corresponding acknowledgement element.

/pr:recordAck/pr:synch ack

If the underlying transport is synchronous this element is used. The element
has no internal data because the acknowledgement immediately follows the
record request on the same communication channel, therefore, the sender
already knows what record request pr:recordAck is acknowledging.

/pr:recordAck/pr:ack

This element is used when returning an acknowledgement asynchronously.
In this case, clients may receive acknowledgements in any order, therefore,
some means must be provided for clients to identify which record request
each acknowledgement is associated with. Hence, several identifiers are
provided that allow clients to make this association. These identifiers are
defined below.

8

Page 60 of 182

Figure 4: Process Documentation Record Acknowledgement

/pr:recordAck/pr:ack/pr:contentName

This element states the type of content that was recorded. The following
standard strings are used, which map to element names defined in the
pr:content element:

• interactionPAssertion

• actorStatePAssertion

• relationshipPAssertion

• exposedInteractionMetaData

• submissionFinished

Therefore, if a pr:identifiedContent element in the record request mes-
sage contained an interaction p-assertion then the acknowledgement would
contain a pr:contentName with the string interactionPAssertion as its con-
tents.

/pr:recordAck/pr:ack/ps:interactionKey

The interaction key of the pr:identifiedContent element being acknowl-
edged.

9

Page 61 of 182

/pr:recordAck/pr:ack/ps:viewKind

The view kind of the pr:identifiedContent element being acknowledged.

/pr:recordAck/pr:ack/ps:localPAssertionId

If the recording of a p-assertion is being acknowledged, this is its local
p-assertion id.

3.4 Faults

The acknowledgement message provides an element in which provenance stores
can put implementation specific error messages.

/pr:recordAck/pr:ERROR

This element holds implementation specific error messages. This element
may be present in both synchronous and asynchronous acknowledgement
messages.

4 Security Considerations

This specification defines the process documentation record request and acknowl-
edgement messages for any provenance store supporting the PReP protocol. In
this context, there are two categories of security aspects that need to be consid-
ered: (a) securing the message exchanges and (b) securing the provenance store
contents.

4.1 Securing Message Exchanges

When messages are exchanged between a recorder and provenance store when
recording process documentation, it is recommended that the communication be
secured using the mechanisms described in WS-Security [Var04]. In order to prop-
erly secure messages, the message body (record document or acknowledgement)
and all relevant headers need to be included in the digital signature so as to prove
the integrity of the message. In the event that a recorder frequently records pro-
cess documentation, it is recommended that a security context be established us-
ing the mechanisms described in WS-Trust [Var05b] and WS-SecureConversation
[Var05a], allowing for potentially more efficient means of authentication.

4.2 Securing Provenance Store Contents

Since this specification defines a mechanism to record process documentation in
provenance stores, security policies should be established that ensure that only
authorized actors can record p-assertions. A detailed architecture for securing
provenance stores and their contents can be found in [GJ+06].

10

Page 62 of 182

5 Conclusion

In this document, a protocol for recording process documentation into a prove-
nance store is defined. The definition includes the format of request and acknowl-
edgement messages and the expected behaviour of provenance stores with respect
to those messages. Using the protocol an actor can record process documentation
compatible with the p-structure.

11

Page 63 of 182

A Process Documentation Record Schema

Below we give the full schema for process documentation record and record ac-
knowledgement messages.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.pasoa.org/schemas/version023s1/record/PRecord.xsd"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

xmlns:pr="http://www.pasoa.org/schemas/version023s1/record/PRecord.xsd"

xmlns:ps="http://www.pasoa.org/schemas/version023s1/PStruct.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.pasoa.org/schemas/version023s1/PStruct.xsd ..\PStruct.xsd ">

<xs:annotation>

<xs:documentation>

The Provenance Store Record schema

Author: Paul Groth Last

Modified: 30 August 2005

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</xs:documentation>

</xs:annotation>

<xs:import

namespace="http://www.pasoa.org/schemas/version023s1/PStruct.xsd"

schemaLocation="../PStruct.xsd" />

<xs:element name="record" type="pr:Record" />

<xs:element name="recordAck" type="pr:RecordAck"/>

<xs:element name="content" type="pr:Content" />

<xs:complexType name="RecordAck">

<xs:sequence>

<xs:element name="synch_ack" minOccurs="0"

maxOccurs="unbounded" type="pr:SynchAck">

<xs:annotation>

<xs:documentation>

If the provenance store is being accessed under

a synchronous connection, (i.e. remote procedure

call style) the provenance store may return a

synch_ack instead of an ack element. Under such

a situation, the provenance store does not need

to parse the incoming message in order to send

an acknowledgment.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="ack" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="contentName">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="interactionPAssertion"/>

<xs:enumeration value="actorStatePAssertion"/>

12

Page 64 of 182

<xs:enumeration value="relationshipPAssertion"/>

<xs:enumeration value="exposedInteractionMetaData"/>

<xs:enumeration value="submissionFinished"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element ref="ps:interactionKey"/>

<xs:element ref="ps:viewKind"/>

<xs:element ref="ps:localPAssertionId" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ERROR" minOccurs="0" maxOccurs="1" type="xs:string">

<xs:annotation>

<xs:documentation>

This field should be pressent if the messageName

element’s value is ERROR. As of yet we do not

define the type of the error message that can be

returned by the provenance store.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Record">

<xs:sequence>

<xs:element name="identifiedContent" type="pr:IdentifiedContent" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="IdentifiedContent">

<xs:sequence>

<xs:element ref="ps:interactionKey"/>

<xs:element ref="ps:viewKind"/>

<xs:element ref="ps:asserter"/>

<xs:element ref="pr:content" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Content">

<xs:choice>

<xs:element ref="ps:interactionPAssertion"/>

<xs:element ref="ps:actorStatePAssertion" />

<xs:element ref="ps:relationshipPAssertion"/>

<xs:element ref="ps:exposedInteractionMetaData"/>

<xs:element name="submissionFinished" type="xs:int" />

</xs:choice>

</xs:complexType>

<xs:complexType name="SynchAck"></xs:complexType>

</xs:schema>

13

Page 65 of 182

B Process Documentation Record WSDL

Below we give the WSDL document for process documentation record and ac-
knowledgement messages.

<?xml version="1.0"?>

<definitions name="PRecord"

targetNamespace="http://www.pasoa.org/schemas/version023s1/record/PRecord.wsdl"

xmlns:tns="http://www.pasoa.org/schemas/version023s1/record/PRecord.wsdl"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:pr="http://www.pasoa.org/schemas/version023s1/record/PRecord.xsd">

<documentation>

The Provenance Store recording port type and messages

Author: Paul Groth

Last Modified: Feb 1 2005

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</documentation>

<import namespace="http://www.pasoa.org/schemas/version023s1/record/PRecord.xsd"

location="./PRecord.xsd" />

<message name="Record">

<part name="body" element="pr:record"/>

</message>

<message name="RecordAck">

<part name="body" element="pr:recordAck"/>

</message>

<portType name="RecordPortType">

<operation name="Record">

<input message="tns:Record"/>

<output message="tns:RecordAck"/>

</operation>

</portType>

</definitions>

References

[Bra97] Scott Bradner. Key words for use in RFCs to indicate requirement levels.
http://www.ietf.org/rfc/rfc2119.txt, 1997.

[GJ+06] Paul Groth, Sheng Jiang, , Simon Miles, Steve Munroe, Victor Tan, Sofia
Tsasakou, and Luc Moreau. An Architecture for Provenance Systems. Tech-
nical report, Electronics and Computer Science, University of Southampton,
2006.

14

Page 66 of 182

[GLM04] Paul Groth, Michael Luck, and Luc Moreau. A protocol for recording
provenance in service-oriented grids. In Teruo Higashino, editor, Proceed-
ings of the 8th International Conference on Principles of Distributed Systems
(OPODIS’04), volume Lecture Notes in Computer Science, pages 124–139,
Grenoble, France, December 2004. Springer-Verlag.

[MGJ+06] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan, and
Luc Moreau. Data model for Process Documentation. Technical report,
University of Southampton, June 2006.

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, and
Luc Moreau. WS Provenance Glossary. Technical report, Electronics and
Computer Science, University of Southampton, 2006.

[TMG+06] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and
Luc Moreau. The Provenance Standardisation Vision. Technical report,
University of Southampton, June 2006.

[Var04] Various authors. Web Services Security. http://www-
128.ibm.com/developerworks/library/specification/ws-secure/, 2004.

[Var05a] Various authors. Web Services Secure Conversation Language. http://www-
128.ibm.com/developerworks/webservices/library/specification/ws-secon/,
2005.

[Var05b] Various authors. Web Services Trust Language. http://www-
128.ibm.com/developerworks/library/specification/ws-trust/, 2005.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation 16
November 1999. http://www.w3.org/TR/xpath, 1999.

15

Page 67 of 182

ws-prov-pquery

Authors:
Simon Miles, U. Southampton
Luc Moreau, U. Southampton
Paul Groth, U. Southampton
Victor Tan, U. Southampton

Steve Munroe, U. Southampton
Sheng Jiang, U. Southampton

November 23, 2006

Provenance Query Protocol

Status of this Memo

This document provides information to the community regarding the specification
of a protocol for querying the provenance of data items from process documen-
tation and has the status of a working draft. It does not define any standards or
technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright 2006.

Abstract

A related document [MGJ+06] defines schemas to be used for documentation
about the execution of a process, process documentation. It also defines the
provenance of a data item as the process that led to that item. A provenance
query is a query for the provenance of a data item and the results of such a query
is documentation of the process that led to the item. In this document, we specify
a protocol by which a querying actor and provenance store can communicate in
performing a provenance query. This primarily takes the form of an abstract
WSDL interface defining messages to be accepted and produced by a provenance
store.

1

Page 68 of 182

Contents

1 Introduction 3
1.1 Goals and Requirements . 3

1.1.1 Requirements . 3
1.1.2 Non-Requirements . 4

2 Terminology and Notation 4
2.1 XML Namespaces . 4
2.2 Notational Conventions . 4
2.3 XML Schema Diagrams . 4
2.4 XPath notation . 6

3 Provenance Query 6

4 Provenance Query Request 6
4.1 Query Data Handle . 7
4.2 P-Assertion Data Key Query Data Handles 9
4.3 Relationship Target . 10
4.4 Relationship Target Filter . 12

5 Behaviour 13
5.1 Data Accessors . 13

6 Provenance Query Result 14
6.1 Full Relationship . 15
6.2 Faults . 16

7 Default Port Name 16

8 Security Considerations 17
8.1 Securing Message Exchanges . 17
8.2 Securing Provenance Store Contents 17

9 Conclusions 17

A Provenance Query Schema 18

B Provenance Query WSDL 21

2

Page 69 of 182

1 Introduction

The amount of information making up the provenance of an entity may be vast.
The details of everything that ultimately caused an entity to be as it is would,
generally, be an unmanageable amount. For example, to give the full provenance
of an experiment’s results, we have to describe the process that produced the
materials used in the experiment, the provenance of materials used in produc-
ing those materials, the devices and software used in the experiment and their
settings, the origin of the experiment design etc. Ultimately, if enough informa-
tion was available, we would include details of processes back to the beginning of
time. Similarly, given enough information, we could give finer and finer grained
information on the processes that led to an entity, e.g. not just documenting that
a sample was tested to see if a chemical was present, but the procedure by which
this is done, the molecular interactions that took place in the testing procedure
and so on. All the information about the provenance of an entity is potentially
useful for someone with a particular question about that entity, but providing it
all in all cases would be counter-productive.

Instead, anyone requiring the provenance of an entity should be able to get
it by expressing the request as a query and scoping that query so that only the
information relevant to them is returned. We define a provenance query engine
as the actor that processes a provenance query and returns the results.

This document defines the schema for a provenance query request, the be-
haviour expected in processing that request and the resulting response. The
WSDL 1.1 description of an interface for a service accepting such requests and
producing such responses is given in Appendix B.

1.1 Goals and Requirements

The goal of this document is to define the protocol for querying the provenance
of data items from process documentation.

1.1.1 Requirements

In meeting this goal, this document must address the following requirements:

• Define the schema of the provenance query request message sent to the
provenance query engine. This definition includes how the data item of
which to find the provenance is identified, and how the scope of the query
results are expressed.

• Define the behaviour of a provenance query engine on receiving a prove-
nance query request.

• Define how provenance queries over distributed process documentation can
be resolved using the links defined in a supporting document [MTG+06].

3

Page 70 of 182

• Define the schema of the provenance query results message returned by the
provenance query engine.

1.1.2 Non-Requirements

This document specifies a synchronous version of the query protocol. Other
documents may specify asynchronous provenance querying.

2 Terminology and Notation

All definitions for the concepts and structures found within this document can
be found in [TGJ+06].

2.1 XML Namespaces

The xml Namespace uri that must be used by implementations of this specifica-
tion is: http://www.pasoa.org/schemas/version023s1/xquery/XQuery.xsd

Table 1 lists xml namespaces that are used in this specification. The choice
of any namespace prefix is arbitrary and not semantically significant.

Prefix XML Namespace Specification(s)
pq http://www.pasoa.org/schemas/version023s1/ [PQuery]

pquery/ProvenanceQuery.xsd

ps http://www.pasoa.org/schemas/version023s1/ [PStruct]
PStruct.xsd

xs http://www.w3.org/2001/XMLSchema [XMLSchema]

Table 1: Prefixes and xml Namespaces used in this specification

2.2 Notational Conventions

The keywords “must ”, “mustnot ”, “required ”, “shall ”, “shallnot ”,
“should ”, “shouldnot ”, “recommended ”, “may ”, and “optional ” in
this document are to be interpreted as described in [Bra97].

2.3 XML Schema Diagrams

This document adopts a graphical notation to describe XML Schema. Figure 1
gives an example of a small xml Schema displayed as a diagram, which is now
explained with reference to the figure.

Figure 1 defines the structure of type ts:Test. The type Test contains a
sequence of elements, which we now detail. One element in the sequence is

4

Page 71 of 182

Figure 1: An example xml Schema diagram

ts:testName, which can be any type and must occur once and only once in
an instance of ts:Test. ts:Name is followed by element ts:testNumber, which
must contain a string. The ts:testNumber element must occur at least once
and can occur as many times as needed. This is denoted by the “1..unbounded”
under the element. Finally, the sequence contains a choice between two elements,
ts:startTest and ts:stopTest, either of which must contain a date.

Below is a simple of description of each of the parts of the xml Schema
diagram format.

An element (instance) is represented by the
qualified name of the element in the box. By
default an element must occur once and only
once. Where this restriction does not hold, the
text “1..unbounded”, “0..unbounded”, “0..N”,
“1..N” (where N is an integer) appears under
the element box. The left hand number is the
minimum occurrences of the element at the po-
sition in the xml document, the right hand
number is the maximum (with “unbounded”
for no maximum).

A complex type is denoted by a lightly marked
box with the qualified name of the type at the
top left. The structure of the type is given
by the elements, types and control structures
within the box.

5

Page 72 of 182

A horizontal sequence of dots represents a se-
quence of elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

A vertical sequence of dots represents a choice
between elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

2.4 XPath notation

In addition to the XML Schema diagrams, an XPath notation [W3C99] is used
to identify each individual element in the specification along with its context, in
order to describe precisely its meaning and use.

3 Provenance Query

To execute a provenance query, a provenance query request is sent to a provenance
query engine by a querying actor and a provenance query result is returned. We
specify below the request document schema, provenance query engine behaviour
and response document schema for a provenance query. The full schema docu-
ment, in which request and response message structures are defined, is given in
Appendix A. The WSDL 1.1 description of the interface taking and producing
these messages is given in Appendix B.

4 Provenance Query Request

A provenance query request is a message sent by a querying actor to a provenance
query engine to perform a query to find the provenance of a data item over
the contents of that, and linked, stores. A provenance query request includes a
query data handle, identifying the entity of which to find the provenance, and a
relationship target filter, specifying the query’s scope.

A provenance query request is instantiated as a document conforming to the
schema depicted in Figure 2.

/pq:provenanceQuery

This element defines a provenance query request.

/pq:provenanceQuery/pq:queryDataHandle

This element defines a search over process documentation to find the record
of an entity at a given event for which the querying actor wishes to find the
provenance.

6

Page 73 of 182

Figure 2: Provenance Query Request

/pq:provenanceQuery/pq:relationshipTargetFilter

This element contains the criteria by which the querying actor specifies
whether any given entity in the documentation, and its relations, should be
included in the query results.

4.1 Query Data Handle

When a querying actor asks for an entity’s provenance, it identifies the entity
such that a provenance query engine can find documentation of the entity. The
identification is called a query data handle. For the actor, a query data handle
identifies an entity at a given event. For the engine, a query data handle identifies
a search for p-assertion data items in process documentation.

Not all p-assertion contents may be in the format required by the search
expression. In this case, the querying actor can provide a set of document language
mappings, which specify how to convert formats so that the search can take place.
0 mappings mean that all the p-assertion contents are expected to be in the
language required by the search, e.g. XML. More than one mapping means that
different p-assertion contents are mapped, e.g. one for CORBA messages, one for
BLAST results etc.

A query data handle is instantiated as a document conforming to the schema
depicted in Figure 3.

/pq:queryDataHandle

This element contains all details used to discover documentation of a data
item.

/pq:queryDataHandle/pq:search

This element includes a definition of a search over process documentation
to find the record of an entity at a given event for which the querying actor
wishes to find the provenance. Different provenance query engines may
support different types of search specification.

7

Page 74 of 182

Figure 3: Query Data Handle

/pq:queryDataHandle/pq:documentLanguageMapping

This element includes a specification of how p-assertion contents are mapped
to the document language required by the search, e.g. if p-assertion con-
tents are comma-separated values, it could be mapped to an XML format
for the search. The mappings required depend on the search language, and
so different provenance query engines may support different types of search
specification.

/pq:queryDataHandle/pq:pStructureReference

This element includes a definition of the exact set of process documentation
over which the query data handle searches.

A pq:pStructureReference, which identifies the set of process documenta-
tion over which the query data handle search will be performed, is instantiated
as a document conforming to the schema depicted in Figure 4.

Figure 4: P-Structure Reference

8

Page 75 of 182

/pq:pStructureReference

This element includes a definition of the exact set of process documentation
over which the query data handle searches.

/pq:pStructureReference/pq:storeContents

The presence of this element is a statement that the query data handle
search should be performed over the full contents of a provenance store.
This element may occur multiple times, to specify that the search is over
multiple stores. Where the element has no contents, this states that the
search should be performed over the default store for the provenance query
engine, usually the store that the engine is deployed as a component of.

/pq:pStructureReference/pq:storeContents/wsa:EndpointReference

If present, this element gives the address of a provenance store over which
the search is conducted. This is a provenance store service port as defined
in [MTG+06].

/pq:pStructureReference/xs:any

Where the storeContents element is not used, the set of process documenta-
tion over which the query data handle searches must be specified in another
way. This element, if present, defines this search space in a way that the
provenance query engine can interpret.

4.2 P-Assertion Data Key Query Data Handles

All provenance query engines can interpret query data handles of a particular
form: a p-assertion data key as specified in the process documentation data
model. This search will find at most one p-assertion data item, i.e. the one
referred to by the key.

An example is shown below.

<pq:queryDataHandle>

<pq:search>

<ps:pAssertionDataKey>

<ps:interactionKey>

<ps:messageSource>...</ps:messageSource>

<ps:messageSink>...</ps:messageSink>

<ps:interactionId>...</ps:interactionId>

</ps:interactionKey>

<ps:viewKind xsi:type="ps:SenderViewKind"/>

<ps:localPAssertionId>...</ps:localPAssertionId>

<ps:dataAccessor>...</ps:dataAccessor>

</ps:pAssertionDataKey>

</pq:search>

<pq:pStructureReference>

<pq:storeContents/>

</pq:pStructureReference>

<pq:queryDataHandle>

9

Page 76 of 182

4.3 Relationship Target

A p-assertion data item is a part, or whole, of a p-assertion’s content. A relation-
ship target is the full set of information about a p-assertion data item that is the
subject or object of a relationship p-assertion. It is used to determine whether a
p-assertion data item is within scope for the provenance query results or not.

A relationship target is instantiated as a document conforming to the schema
depicted in Figure 5.

Figure 5: Relationship Target

/pq:relationshipTarget

10

Page 77 of 182

This element contains all the information on one p-assertion data item.

/pq:relationshipTarget/ps:interactonKey

This is the interaction key of the interaction that the p-assertion containing
the data item documents.

/pq:relationshipTarget/ps:viewKind

This is the view kind of the asserter of the p-assertion containing the data
item.

/pq:relationshipTarget/ps:localPAssertionId

This is the local p-assertion ID of the p-assertion containing the data item.

/pq:relationshipTarget/ps:dataAccessor

This is the location of the data item within the content of its containing
p-assertion.

/pq:relationshipTarget/ps:parameterName

This is the role played by the data item in the relationship of which this
item is a target.

/pq:relationshipTarget/pl:objectLink

This is a link to the provenance store in which the p-assertion data item is
documented.

/pq:relationshipTarget/ps:relation

This is the type of the relationship of which the data item is a target.

/pq:relationshipTarget/ps:asserter

This is the identity of the asserter of the p-assertion containing the data
item.

/pq:relationshipTarget/ps:interactionRecord

This is the full set of p-assertions recorded about the interaction in which
the data item is asserted.

/pq:relationshipTarget/ps:interactionPAssertion

If present, this is the interaction p-assertion in which the data item is con-
tained.

/pq:relationshipTarget/ps:actorStatePAssertion

If present, this is the actor state p-assertion in which the data item is
contained.

/pq:relationshipTarget/ps:relationshipPAssertion

If present, this is the relationship p-assertion which is itself the object of a
relationship (and so the data item in this context).

11

Page 78 of 182

4.4 Relationship Target Filter

The set of process documentation that may be returned in response to a prove-
nance query request could be vast, and most of it irrelevant to a querying actor
for any one purpose. Therefore, we need to allow the querying actor to specify
the scope of the provenance query, i.e. a definition of what documentation is
relevant enough to be part of the query results. This is the purpose of the rela-
tionship target filter. A relationship target filter is used to filter each object of a
relationship p-assertion found while evaluating the provenance query, and filters
out those that are not in scope. To do this, the provenance query engine con-
structs a relationship target for each relationship object, which encapsulates all
relevant data about the data item the object identifies. The relationship target
filter then defines a function that operates over a relationship target and returns
true or false depending on whether the relationship target is in scope or not.

A relationship target filter is instantiated as a document conforming to the
schema depicted in Figure 6.

Figure 6: Relationship Target Filter

/pq:relationshipTargetFilter

This element includes a specification of the scope of a provenance query.

/pq:relationshipTargetFilter/pq:check

This element contains a definition for a function that operates on a rela-
tionship target that determines whether the target is in scope or not.

/pq:relationshipTargetFilter/pq:check/xs:any

This is the function definition. The form depends on what is supported
by the provenance query engine, and may be suited to a particular type of
process documentation.

12

Page 79 of 182

/pq:relationshipTargetFilter/pq:documentLanguageMapping

This element includes a specification of how p-assertion contents are mapped
to the document language required by the filter, e.g. if p-assertion contents
are comma-separated values, it could be mapped to an XML format for
the search. The mappings required depend on the search language, and so
different provenance query engines may support different types of search
specification.

5 Behaviour

A provenance query request is processed as follows.

1. The search for a data item expressed by the query data handle is per-
formed on the process documentation contained in the given search space
(pStructureReference). The result of this search is a set of p-assertion
data items, addressed by p-assertion data keys.

2. For each relationship, asserted in the process documentation, of which one
of those p-assertion data items is a subject, take each object of the relation-
ship, express it as a relationship target, and execute the relationship target
filter on it. As the provenance store containing the data item may not in-
clude both views of the interaction in which the data item was exchanged,
the other view, referred to by a view link, may be retrieved by submitting
process documentation and provenance queries to the linked store.

3. Where a relationship object is accepted by the relationship target filter,
find the provenance of the p-assertion data item referred to by that object
using the steps above and the same relationship target filter. As the object
may be in another provenance store, specified by the object link, this may
involve submitting process documentation and provenance queries to that
store.

4. The final results of the query are comprised of two parts: the p-assertion
data keys for every item discovered by the query data handle search; and,
for every relationship object accepted by the relationship target filter, the
relationship between that object and the subject of the relationship.

5.1 Data Accessors

The process documentation data model allows data accessors of any form to
be used in the subjects and objects of relationship p-assertions. It is left to
querying actors to correctly interpret these. However, a provenance query engine,
following the above algorithm, must also be able to interpret them in order to

13

Page 80 of 182

determine whether the object of one relationship is the same as the object of
another relationship. The exact data accessors that a provenance query engine
can understand is not restricted, but in order to use them the engine must be able
to perform the following operations. For each operation, we state exactly why it
is needed, i.e. what necessary operation would be impossible if the operation was
not defined.

Get Accessor For Item Get the data accessor for a result of a query data
handle search. Without this operation, an engine is unable to determine
whether the subject of a relationship p-assertion refers to a data item found
by the query data handle.

Test Accessor Equality Given the data accessor in the subject of a relation-
ship and the data accessor in an object of a relationship, determine whether
they refer to the same item. This may or may not involve navigating the
p-assertion content. Without this operation, an engine cannot iteratively
follow the relationships of each data item in the process.

6 Provenance Query Result

The final results of the query are comprised of two parts: the p-assertion data
items from the query data handle search (the start data items); and, for every
relationship object accepted by the filter, the relationship between that object
and the subject in that relationship.

A provenance query result is instantiated as a document conforming to the
schema depicted in Figure 7.

Figure 7: Provenance Query Result

/pq:provenanceQueryResult/pq:start

This element contains the p-assertion data keys for the items found by the
query data handle search.

14

Page 81 of 182

/pq:provenanceQueryResult/pq:start/ps:pAssertionDataKey

This is a p-assertion data key for an item found by the query data handle
search.

/pq:provenanceQueryResult/pq:fullRelationship

This element contains the details of a relationship between two data items
in the results of the provenance query.

6.1 Full Relationship

A full relationship is the full details of a relationship between two p-assertion data
items. The information it contains is derived from a relationship p-assertion, but
there are two differences. First, there is only a single object per full relationship,
because each relationship object has been evaluated independently as to whether
it is in scope for the provenance. Second, it is not contained within an interaction
record, so the interaction key and view kind of the subject is included in a full
relationship.

By matching a start p-assertion data key with those in the subjects and
objects of full relationships, a graph of relationships describing the provenance of
that start item can be determined.

A full relationship is instantiated as a document conforming to the schema
depicted in Figure 8.

Figure 8: Full Relationship

/pq:fullRelationship

This element contains the details of a relationship between two p-assertion
data items.

15

Page 82 of 182

/pq:fullRelationship/pq:fullSubjectId

This is the subject of the relationship. It has exactly the same contents
as the object ID of a relationship p-assertion as defined for the process
documentation data model [MGJ+06].

/pq:fullRelationship/ps:relation

This is the type of relationship between subject and object.

/pq:fullRelationship/ps:localPAssertionId

This is the local p-assertion ID of the relationship p-assertion from which
the full relationship is derived. The other identifiers of the p-assertion, its
interaction key and view kind, are the same as in the fullSubjectId.

/pq:fullRelationship/pq:fullObjectId

This is the object of the relationship. It has exactly the same contents
as the object ID of a relationship p-assertion as defined for the process
documentation data model [MGJ+06].

6.2 Faults

Provenance query faults are exchanged by using extensions of the Provenance-
QueryFault type. A default element is specified for this type, and is shown in
Figure 9.

Figure 9: Provenance Query Fault

/pq:provenanceQueryFault

This element, or extensions of it, represents a fault caused by the evaluation
of a provenance query request.

7 Default Port Name

In order to aid addressing of provenance stores, we require that each interface
that can be assumed to be present in every provenance store be given a default
port context name [MTG+06], i.e. the last part of the URL addressing the port
supporting that interface. For the provenance query interface, the default port
name is pquery.

16

Page 83 of 182

8 Security Considerations

This specification defines the process documentation query request and response
messages for any provenance store supporting the process documentation query
interface. In this context, there are two categories of security aspects that need
to be considered: (a) securing the message exchanges and (b) securing the prove-
nance store contents.

8.1 Securing Message Exchanges

When messages are exchanged between a querier and provenance store in a pro-
cess documentation query, it is recommended that the communication be secured
using the mechanisms described in WS-Security [Var04]. In order to properly se-
cure messages, the message body (query expression or results) and all relevant
headers need to be included in the digital signature so as to prove the integrity of
the message. In the event that a querier frequently performs process documenta-
tion queries on a store it is recommended that a security context be established us-
ing the mechanisms described in WS-Trust [Var05b] and WS-SecureConversation
[Var05a], allowing for potentially more efficient means of authentication.

8.2 Securing Provenance Store Contents

Since this specification defines a mechanism to retrieve the contents of provenance
stores, security policies should be established that ensure that only authorized
queriers can access the p-assertions.

9 Conclusions

The aim of a process documentation data model is, first among many require-
ments, to enable the provenance of items to be determined. In this document,
we have presented the data models for expressing provenance queries and their
results, and stated the behaviour that can be expected of an engine evaluating
such a query.

17

Page 84 of 182

A Provenance Query Schema

Below we give the full schema for provenance queries and their results.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.pasoa.org/schemas/version023s1/pquery/ProvenanceQuery.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ps="http://www.pasoa.org/schemas/version023s1/PStruct.xsd"

xmlns:pq="http://www.pasoa.org/schemas/version023s1/pquery/ProvenanceQuery.xsd"

xmlns:pl="http://www.pasoa.org/schemas/version023s1/distribution/PLinks.xsd"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:annotation>

<xs:documentation>

Author: Simon Miles

Last Modified: 28 Feb 2006

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</xs:documentation>

</xs:annotation>

<xs:import namespace="http://www.pasoa.org/schemas/version023s1/PStruct.xsd"

schemaLocation="../PStruct.xsd"/>

<xs:import namespace="http://www.pasoa.org/schemas/version023s1/distribution/PLinks.xsd"

schemaLocation="../distribution/PLinks.xsd"/>

<xs:import namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"

schemaLocation="../wsaddressing.xsd"/>

<xs:element name="provenanceQuery" type="pq:ProvenanceQuery"/>

<xs:element name="provenanceQueryResult" type="pq:ProvenanceQueryResult"/>

<xs:element name="provenanceQueryFault" type="pq:ProvenanceQueryFault"/>

<xs:complexType name="ProvenanceQueryFault"/>

<xs:complexType name="ProvenanceQuery">

<xs:sequence>

<xs:element ref="pq:queryDataHandle"/>

<xs:element ref="pq:relationshipTargetFilter"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ProvenanceQueryResult">

<xs:sequence>

<xs:element name="start">

<xs:complexType>

<xs:sequence>

<xs:element ref="ps:pAssertionDataKey" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element ref="pq:fullRelationship" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="queryDataHandle" type="pq:QueryDataHandle"/>

18

Page 85 of 182

<xs:element name="documentLanguageMapping" type="pq:DocumentLanguageMapping"/>

<xs:complexType name="DocumentLanguageMapping">

<xs:sequence>

<xs:any/>

</xs:sequence>

</xs:complexType>

<xs:element name="pStructureReference" type="pq:PStructureReference"/>

<xs:element name="storeContents" type="pq:StoreContents"/>

<xs:element name="relationshipTargetFilter" type="pq:RelationshipTargetFilter"/>

<xs:complexType name="PStructureReference">

<xs:choice>

<xs:sequence>

<xs:element ref="pq:storeContents" maxOccurs="unbounded"/>

</xs:sequence>

<xs:any/>

</xs:choice>

</xs:complexType>

<xs:complexType name="StoreContents">

<xs:sequence>

<xs:element ref="wsa:EndpointReference" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="QueryDataHandle">

<xs:sequence>

<xs:element name="search" type="pq:Search"/>

<xs:element ref="pq:documentLanguageMapping" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="pq:pStructureReference"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="RelationshipTargetFilter">

<xs:sequence>

<xs:element name="check" type="pq:Search"/>

<xs:element ref="pq:documentLanguageMapping" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="relationshipTarget" type="pq:RelationshipTarget"/>

<xs:complexType name="RelationshipTarget">

<xs:sequence>

<xs:element ref="ps:interactionKey"/>

<xs:element ref="ps:viewKind"/>

<xs:element ref="ps:localPAssertionId"/>

<xs:element ref="ps:dataAccessor"/>

<xs:element ref="ps:parameterName"/>

<xs:element ref="pl:objectLink"/>

<xs:element ref="ps:relation"/>

<xs:element ref="ps:asserter"/>

<xs:element ref="ps:interactionRecord"/>

<xs:choice>

<xs:element ref="ps:interactionPAssertion"/>

<xs:element ref="ps:actorStatePAssertion"/>

<xs:element ref="ps:relationshipPAssertion"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

19

Page 86 of 182

<xs:element name="fullSubjectId" type="ps:ObjectId"/>

<xs:element name="fullObjectId" type="ps:ObjectId"/>

<xs:complexType name="FullRelationship">

<xs:sequence>

<xs:element ref="pq:fullSubjectId"/>

<xs:element ref="ps:relation"/>

<xs:element ref="ps:localPAssertionID"/>

<xs:element ref="pq:fullObjectId"/>

</xs:sequence>

</xs:complexType>

<xs:element name="fullRelationship" type="pq:FullRelationship"/>

<xs:complexType name="Search">

<xs:sequence>

<xs:any/>

</xs:sequence>

</xs:complexType>

</xs:schema>

20

Page 87 of 182

B Provenance Query WSDL

Below we give the WSDL document for provenance query and response messages.

<?xml version="1.0"?>

<definitions name="PQuery"

targetNamespace="http://www.pasoa.org/schemas/version023s1/pquery/PQuery.wsdl"

xmlns:tns="http://www.pasoa.org/schemas/version023s1/pquery/PQuery.wsdl"

xmlns:pq="http://www.pasoa.org/schemas/version023s1/pquery/ProvenanceQuery.xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<documentation>

The Provenance Store provenance query port type and messages

Author: Simon Miles

Last Modified: 28 Feb 2006

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</documentation>

<import namespace = "http://www.pasoa.org/schemas/version023s1/pquery/ProvenanceQuery.xsd"

location = "./ProvenanceQuery.xsd"/>

<!-- Defines the Provenance Query Port type which offers one operation:

the ProvenanceQuery operation. This operation takes in a ProvenanceQuery message defined

by the pq:provenanceQuery element in ProvenanceQuery.xsd. The operation returns an output

message ProvenanceQueryResult defined by the pq:provenanceQueryResult element in ProvenanceQuery.xsd -->

<portType name = "PQueryPortType">

<operation name = "ProvenanceQuery">

<input message = "tns:ProvenanceQuery"/>

<output message = "tns:ProvenanceQueryResult"/>

<fault message = "tns:ProvenanceQueryFault"/>

</operation>

</portType>

<message name = "ProvenanceQuery">

<part name = "body" element = "pq:provenanceQuery"/>

</message>

<message name = "ProvenanceQueryResult">

<part name = "body" element = "pq:provenanceQueryResult"/>

</message>

<message name = "ProvenanceQueryFault">

<part name = "body" element = "pq:provenanceQueryFault"/>

</message>

</definitions>

References

[Bra97] Scott Bradner. Key words for use in RFCs to indicate requirement levels.
http://www.ietf.org/rfc/rfc2119.txt, 1997.

21

Page 88 of 182

[MGJ+06] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan, and
Luc Moreau. Data model for Process Documentation. Technical report,
University of Southampton, June 2006.

[MTG+06] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, and Luc
Moreau. WSRF Data Model Profile for Distributed Provenance. Technical
report, University of Southampton, June 2006.

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, and
Luc Moreau. WS Provenance Glossary. Technical report, Electronics and
Computer Science, University of Southampton, 2006.

[Var04] Various authors. Web Services Security. http://www-
128.ibm.com/developerworks/library/specification/ws-secure/, 2004.

[Var05a] Various authors. Web Services Secure Conversation Language. http://www-
128.ibm.com/developerworks/webservices/library/specification/ws-secon/,
2005.

[Var05b] Various authors. Web Services Trust Language. http://www-
128.ibm.com/developerworks/library/specification/ws-trust/, 2005.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation 16
November 1999. http://www.w3.org/TR/xpath, 1999.

22

Page 89 of 182

ws-prov-xquery

Authors:
Simon Miles, U. Southampton

Steve Munroe, U. Southampton
Paul Groth, U. Southampton

Sheng Jiang, U. Southampton
Victor Tan, U. Southampton

John Ibbotson, IBM
Luc Moreau, U. Southampton

August 29, 2006

Process Documentation Query
Protocol

Status of this Memo

This document provides information to the community regarding the specification
of a protocol for querying the process documentation contained in a provenance
store and has the status of a working draft. It does not define any standards or
technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright 2006.

Abstract

A related document [MGJ+06] defines schemas to be used for documentation
about the execution of a process, process documentation, and introduce a prove-
nance store, a type of Web Service with the capability for storing and giving
access to process documentation. In particular, process documentation has a de-
fined schema, the p-structure, which clients of a provenance store can navigate
in queries to extract particular pieces of process documentation. In this docu-
ment, we specify a protocol by which a querying actor and provenance store can
communicate in performing a process documentation query. This primarily takes
the form of an abstract WSDL interface defining messages to be accepted and
produced by a provenance store.

1

Page 90 of 182

Contents

1 Introduction 3
1.1 Goals and Requirements . 3

1.1.1 Requirements . 3
1.1.2 Non-Requirements . 3

2 Terminology and Notation 3
2.1 XML Namespaces . 3
2.2 Notational Conventions . 4
2.3 XML Schema Diagrams . 4
2.4 XPath notation . 5

3 Process Documentation Query 5
3.1 Request . 6
3.2 Query Expressions . 6

3.2.1 Examples . 7
3.3 Behaviour . 7
3.4 Response . 7
3.5 Faults . 8

4 Default Port Name 8

5 Security Considerations 8
5.1 Securing Message Exchanges . 8
5.2 Securing Provenance Store Contents 9

6 Conclusions 9

A Process Documentation Query Schema 10

B Process Documentation Query WSDL 11

2

Page 91 of 182

1 Introduction

Every provenance store supplies a Web Service interface for querying process
documentation by navigating the p-structure. It has a single operation, query,
that takes an XQuery expression as input and returns a set of XML documents,
whose schemas are dependent on the XQuery, as result. This document defines
the schema for the request and response messages. The WSDL 1.1 description of
the interface is given in Appendix B.

1.1 Goals and Requirements

The goal of this document is to define the protocol for querying process docu-
mentation contained in a provenance store using XQuery.

1.1.1 Requirements

In meeting this goal, this document must address the following requirements:

• Define the schema of the query request message sent to the provenance
store.

• Give the additional requirements on the XQuery expression for navigating
process documentation.

• Define the behaviour of a provenance store on receiving a query request.

• Define the schema of the query response message returned by the prove-
nance store.

1.1.2 Non-Requirements

This document specifies a synchronous version of the query protocol. Other
documents may specify asynchronous querying.

2 Terminology and Notation

All definitions for the concepts and structures found within this document can
be found in [TGJ+06].

2.1 XML Namespaces

The xml Namespace uri that must be used by implementations of this specifica-
tion is: http://www.pasoa.org/schemas/version023s1/xquery/XQuery.xsd

Table 1 lists xml namespaces that are used in this specification. The choice
of any namespace prefix is arbitrary and not semantically significant.

3

Page 92 of 182

Prefix XML Namespace Specification(s)
xq http://www.pasoa.org/schemas/version023s1/xquery/XQuery.xsd [PDXQuery]
xs http://www.w3.org/2001/XMLSchema [XMLSchema]

Table 1: Prefixes and xml Namespaces used in this specification

2.2 Notational Conventions

The keywords “must ”, “mustnot ”, “required ”, “shall ”, “shallnot ”,
“should ”, “shouldnot ”, “recommended ”, “may ”, and “optional ” in
this document are to be interpreted as described in [Bra97].

2.3 XML Schema Diagrams

This document adopts a graphical notation to describe XML Schema. Figure 1
gives an example of a small xml Schema displayed as a diagram, which is now
explained with reference to the figure.

Figure 1: An example xml Schema diagram

Figure 1 defines the structure of type ts:Test. The type Test contains a
sequence of elements, which we now detail. One element in the sequence is
ts:testName, which can be any type and must occur once and only once in
an instance of ts:Test. ts:Name is followed by element ts:testNumber, which
must contain a string. The ts:testNumber element must occur at least once
and can occur as many times as needed. This is denoted by the “1..unbounded”
under the element. Finally, the sequence contains a choice between two elements,
ts:startTest and ts:stopTest, either of which must contain a date.

Below is a simple of description of each of the parts of the xml Schema
diagram format.

4

Page 93 of 182

An element (instance) is represented by the
qualified name of the element in the box. By
default an element must occur once and only
once. Where this restriction does not hold, the
text “1..unbounded”, “0..unbounded”, “0..N”,
“1..N” (where N is an integer) appears under
the element box. The left hand number is the
minimum occurrences of the element at the po-
sition in the xml document, the right hand
number is the maximum (with “unbounded”
for no maximum).

A complex type is denoted by a lightly marked
box with the qualified name of the type at the
top left. The structure of the type is given
by the elements, types and control structures
within the box.

A horizontal sequence of dots represents a se-
quence of elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

A vertical sequence of dots represents a choice
between elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

2.4 XPath notation

In addition to the XML Schema diagrams, an XPath notation [W3C99] is used
to identify each individual element in the specification along with its context, in
order to describe precisely its meaning and use.

3 Process Documentation Query

We specify below the request document schema, query expression form, prove-
nance store behaviour and response document schema for a process documenta-
tion query. The full schema document, in which request and response message
structures are defined, is given in Appendix A. The WSDL 1.1 description of the
interface taking and producing these messages is given in Appendix B.

5

Page 94 of 182

3.1 Request

A process documentation query request is a message sent by a querying actor to
a provenance store to perform an XQuery over the contents of the store. It is
instantiated as a document conforming to the schema depicted in Figure 2.

Figure 2: Process Documentation Query Request

The document contents are described in detail as follows.

/xq:query

This element represents a request for a provenance store to perform an
XQuery operation over its contents, and return the results.

/xq:query/xq:xquery

This element contains the XQuery expression itself, conforming to the de-
tails given in the next section.

3.2 Query Expressions

The query operation treats the contents of a provenance store as a single XML
document conforming to the p-structure XML Schema. The expression should
follow the XQuery 1.0 specification [BCF+06], but with the following caveats.

First, the result of evaluating the expression should be one or more XML
documents, i.e. not just string, integer or other literal values. This is to allow the
results to be returned unambiguously in a response document.

Second, as an XQuery expression can be performed over multiple documents
or document nodes, queriers need to specify which document they wish to query.
By default all provenance stores implementing the process documentation query
interface must recognise the pre-bound variable $ns:pstruct in an XQuery expres-
sion, where ns is any prefix bound to the namespace
http://www.pasoa.org/schemas/version023s1/PStruct.xsd. This variable
should be bound to a document node that follows the schema of the pstruct
element defined in the p-structure data model [MGJ+06], with the expectation
that the contents of the document is a p-structure containing the full contents of
the provenance store. Particular implementations may provide bindings to other
documents where applicable.

Specific provenance-store implementation may provide built-in XQuery func-
tions for common or advanced traversal of the store contents.

6

Page 95 of 182

3.2.1 Examples

The following example returns the whole provenance store contents as a p-
structure.

declare namespace ps = "http://www.pasoa.org/schemas/version023s1/PStruct.xsd";

$ps:pstruct

The following example returns an HTML unordered list summarising the re-
lationship p-assertions in a store. The format of each item is subject relation
object1 object2... The subjects and objects are identified by the interaction ID of
the interaction record in which the data item is contained.

declare namespace ps = "http://www.pasoa.org/schemas/version023s1/PStruct.xsd";

 {

for $r in $ps:pstruct//ps:relationshipPAssertion

return {

(data($r/../../ps:interactionKey/ps:interactionId),

’ ’, data($r/ps:relation), ’ ’)}

{for $o in $r/ps:objectId return (data($o/ps:interactionKey/ps:interactionId), ’ ’)

}

}

3.3 Behaviour

On receiving a process documentation query request, a provenance store is ex-
pected to evaluate the query and synchronously return the result in a response
message. The result of the query is exactly that document returned by the
XQuery submitted.

3.4 Response

A process documentation query response is sent by a provenance store to the
querying actor that issued the corresponding request. It is instantiated as a
document conforming to the schema depicted in Figure 3.

Figure 3: Process Documentation Query Response

The document contents are described in detail as follows.

/xq:queryResult

This element represents the results of an XQuery.

/xq:queryResult/xs:any

Each child element contains a document fragment produced by evaluating
the request’s XQuery expression.

7

Page 96 of 182

3.5 Faults

Process documentation query faults are exchanged by using extensions of the
XQueryFault type, the default element for which is shown in Figure 4.

Figure 4: XQuery Fault

/xq:queryFault

This element, or extensions of it, represents a fault caused by the evaluation
of a process documentation query request.

4 Default Port Name

In order to aid addressing of provenance stores, we require that each interface
that can be assumed to be present in every provenance store be given a default
port context name [MTG+06], i.e. the last part of the URL addressing the port
supporting that interface. For the process documentation query interface, the
default port name is xquery.

5 Security Considerations

This specification defines the process documentation query request and response
messages for any provenance store supporting the process documentation query
interface. In this context, there are two categories of security aspects that need
to be considered: (a) securing the message exchanges and (b) securing the prove-
nance store contents.

5.1 Securing Message Exchanges

When messages are exchanged between a querier and provenance store in a pro-
cess documentation query, it is recommended that the communication be secured
using the mechanisms described in WS-Security [Var04]. In order to properly se-
cure messages, the message body (query expression or results) and all relevant
headers need to be included in the digital signature so as to prove the integrity of
the message. In the event that a querier frequently performs process documenta-
tion queries on a store it is recommended that a security context be established us-
ing the mechanisms described in WS-Trust [Var05b] and WS-SecureConversation
[Var05a], allowing for potentially more efficient means of authentication.

8

Page 97 of 182

5.2 Securing Provenance Store Contents

Since this specification defines a mechanism to retrieve the contents of provenance
stores, security policies should be established that ensure that only authorized
queriers can access the p-assertions.

6 Conclusions

Querying the details of a past process, as documented in process documenta-
tion, requires a query language and a means by which queries expressed in that
language can be exchanged with provenance stores containing the documenta-
tion. This document describes a protocol, defined in an interface description, for
querying process documentation.

9

Page 98 of 182

A Process Documentation Query Schema

Below we give the full schema for process documentation queries.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns="http://www.pasoa.org/schemas/version023s1/xquery/XQuery.xsd"

xmlns:xq="http://www.pasoa.org/schemas/version023s1/xquery/XQuery.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.pasoa.org/schemas/version023s1/xquery/XQuery.xsd"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:annotation>

<xs:documentation>

An XQuery interface for Web Services

Author: Simon Miles

Last Modified: 28 Feb 2006

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</xs:documentation>

</xs:annotation>

<xs:element name="query" type="Query">

<xs:annotation>

<xs:documentation>Query operation</xs:documentation>

</xs:annotation>

</xs:element>

<xs:complexType name="Query">

<xs:annotation>

<xs:documentation>Query operation type</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="xquery" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:element name="queryResult" type="QueryResult">

<xs:annotation>

<xs:documentation>Query results</xs:documentation>

</xs:annotation>

</xs:element>

<xs:complexType name="QueryResult">

<xs:annotation>

<xs:documentation>Query results type</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="queryFault" type="QueryFault">

<xs:annotation>

<xs:documentation>Query fault</xs:documentation>

</xs:annotation>

</xs:element>

<xs:complexType name="QueryFault">

<xs:annotation>

<xs:documentation>Fault in XQuery evaluation</xs:documentation>

</xs:annotation>

</xs:complexType>

</xs:schema>

10

Page 99 of 182

B Process Documentation Query WSDL

Below we give the WSDL document for process documentation query and re-
sponse messages.

<?xml version="1.0"?>

<definitions name="XQuery"

targetNamespace="http://www.pasoa.org/schemas/version023s1/xquery/XQuery.wsdl"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://www.pasoa.org/schemas/version023s1/xquery/XQuery.wsdl"

xmlns:xq="http://www.pasoa.org/schemas/version023s1/xquery/XQuery.xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns="http://schemas.xmlsoap.org/wsdl/">

<documentation>

An XQuery interface for Web Services

Author: Simon Miles

Last Modified: 28 Feb 2006

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</documentation>

<import namespace="http://www.pasoa.org/schemas/version023s1/xquery/XQuery.xsd" location="./XQuery.xsd"/>

<message name="Query">

<part name="body" element="xq:query"/>

</message>

<message name="QueryAck">

<part name="body" element="xq:queryAck"/>

</message>

<portType name="XQueryPortType">

<operation name="Query">

<input message="tns:Query"/>

<output message="tns:QueryAck"/>

</operation>

</portType>

</definitions>

References

[BCF+06] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu,
Jonathan Robie, and Jerome Simeon. XQuery 1.0: An XML Query Lan-
guage. http://www.w3.org/TR/xquery, 2006.

[Bra97] S. Bradner. Key words for use in RFCs to indicate requirement levels.
http://www.ietf.org/rfc/rfc2119.txt, 1997.

[MGJ+06] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan, and
Luc Moreau. Data model for Process Documentation. Technical report,
University of Southampton, June 2006.

[MTG+06] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, and Luc
Moreau. WSRF Data Model Profile for Distributed Provenance. Technical
report, University of Southampton, June 2006.

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, and
Luc Moreau. WS Provenance Glossary. Technical report, Electronics and
Computer Science, University of Southampton, 2006.

11

Page 100 of 182

[Var04] Various authors. Web Services Security. http://www-
128.ibm.com/developerworks/library/specification/ws-secure/, 2004.

[Var05a] Various authors. Web Services Secure Conversation Language. http://www-
128.ibm.com/developerworks/webservices/library/specification/ws-secon/,
2005.

[Var05b] Various authors. Web Services Trust Language. http://www-
128.ibm.com/developerworks/library/specification/ws-trust/, 2005.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation 16
November 1999. http://www.w3.org/TR/xpath, 1999.

12

Page 101 of 182

ws-prov-sign

Authors:
Victor Tan, U. Southampton

Simon Miles, U. Southampton
Steve Munroe, U. Southampton

Paul Groth, U. Southampton
Sheng Jiang, U. Southampton

John Ibbotson, IBM
Luc Moreau, U. Southampton

August 30, 2006

A Profile for Non-Repudiable
Process Documentation

Status of this Memo

This document provides information to the community regarding a profile for
creating process documentation that is non-repudiable through the use of signa-
tures, and has the status of a working draft. It does not define any standards or
technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright 2006.

Abstract

The data model for process documentation [MGJ+06] describes p-assertions as
individual units for documenting process. These p-assertions can be cryptograph-
ically signed by asserting actors in order to establish accountability for their
creation. This document extends on the data model for the basic p-assertions
(relationship, actor-state and interaction) to include support for signatures.

1

Page 102 of 182

Contents

1 Introduction 3
1.1 Goals and Requirements . 3

1.1.1 Requirements . 3
1.1.2 Non-Requirements . 3

2 Terminology and Notation 3
2.1 XML Namespaces . 4
2.2 Notational Conventions . 4
2.3 XML Schema Diagrams . 4
2.4 XPath notation . 5

3 Signatures in P-Assertions 6
3.1 Signed Interaction P-Assertion . 6
3.2 Signed Actor State P-Assertion 7
3.3 Signed Relationship P-Assertion 7

4 Conclusion 8

A Schema for Signed Process Documentation 10

2

Page 103 of 182

1 Introduction

The data model for process documentation [MGJ+06] provides descriptions of
different ways in which processes may be documented. Individual items of pro-
cess documentation, p-assertions, are created by asserting actors with unique
identities. Signing these p-assertions links their identities to these p-assertions
and establishes accountability, and subsequent liability, for their creation. This
document shows how the data model and schema for p-assertions is modified to
include a Signature element, and how this element is used in establishing non-
repudiation.

1.1 Goals and Requirements

The goal of this document is to provide an extended data model for p-assertions
which permits support for the use of signatures.

1.1.1 Requirements

In meeting this goal, this document must address the following requirements:

• Explain how signatures in the extended data model can be used for non-
repudiation

1.1.2 Non-Requirements

This document does not intend to meet the following requirements:

• Explain alternative mechanisms (other than signatures) to achieve non-
repudiation.

• Prescribe measures to be undertaken if p-assertions are not signed when
they are expected to be, or if the signature on a p-assertion is determined
to be invalid.

• Propose a technology specific approach to implementing signatures within
the data model.

2 Terminology and Notation

All definitions for the concepts and structures found within this document can
be found in [TGJ+06].

3

Page 104 of 182

2.1 XML Namespaces

The xml Namespace uri that must be used by implementations of this specifi-
cation is: http://www.pasoa.org/schemas/version023s1/PStruct.xsd

Table 1 lists xml namespaces that are used in this specification. The choice
of any namespace prefix is arbitrary and not semantically significant.

Prefix XML Namespace Specification(s)
ps http://www.pasoa.org/schemas/version023s1/PStruct.xsd [P-Structure]
wsa http://schemas.xmlsoap.org/ws/2004/08/addressing [WS-Addressing]
xs http://www.w3.org/2001/XMLSchema [XMLSchema]

Table 1: Prefixes and xml Namespaces used in this specification

2.2 Notational Conventions

The keywords “must ”, “mustnot ”, “required ”, “shall ”, “shallnot ”,
“should ”, “shouldnot ”, “recommended ”, “may ”, and “optional ” in
this document are to be interpreted as described in [Bra97].

2.3 XML Schema Diagrams

This documents adopts a graphical notation to describe XML Schema. Figure 1
gives an example of a small xml Schema displayed as a diagram, which is now
explained with reference to the figure.

Figure 1: An example xml Schema diagram

Figure 1 defines the structure of type ts:Test. The type Test contains a
sequence of elements, which we now detail. One element in the sequence is

4

Page 105 of 182

ts:testName, which can be any type and must occur once and only once in an
instance of ts:Test. ts:Name is followed by element ts:testNumber, which must
contain a string. The ts:testNumber element must occur at least once and can
occur as many times as needed. This is denoted by the “1..unbounded” un-
der the element. Finally, the sequence contains a choice between two elements,
ts:startTest and ts:stopTest, either of which must contain a date.

Below is a simple of description of each of the parts of the xml Schema
diagram format.

An element (instance) is represented by the
qualified name of the element in the box. By
default an element must occur once and only
once. Where this restriction does not hold, the
text “1..unbounded”, “0..unbounded”, “0..N”,
“1..N” (where N is an integer) appears under
the element box. The left hand number is the
minimum occurrences of the element at the po-
sition in the xml document, the right hand
number is the maximum (with “unbounded”
for no maximum).

A complex type is denoted by a lightly marked
box with the qualified name of the type at the
top left. The structure of the type is given
by the elements, types and control structures
within the box.

A horizontal sequence of dots represents a se-
quence of elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

A vertical sequence of dots represents a choice
between elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

2.4 XPath notation

In addition to the XML Schema diagrams, an XPath notation [W3C99] is used
to identify each individual element in the specification along with its context, in
order to describe precisely its meaning and use.

5

Page 106 of 182

3 Signatures in P-Assertions

The provenance of a data item can only be determined through the analysis of
its related process documentation. However, process documentation in the form
of p-assertions created by an actor only represents that actor’s subjective view of
events in the process it is documenting. It is therefore important that actors be
held accountable for p-assertions they create, since p-assertions with erroneous
information will affect other information processing functions. If such account-
ability is desirable in a specific provenance aware application, it can be made
compulsory for actors to sign p-assertions they create. This establishes a direct
link between the signed p-assertions and an actor’s unique identity, and makes
it impossible for it to deny having created a specific p-assertion (the property of
non-repudiation).

The use of signatures assumes that actors operate within an environment
that supports the use of a public key infrastructure through which certificates
are distributed. The verification of a signature on a p-assertion can be achieved
by the repository to which p-assertions are submitted for storage, or by querying
actors that retrieve p-assertions from this repository. The use of signatures does
not guarantee the truth (or otherwise) of the contents of a p-assertion, it only
establishes the identity of the actor involved in its creation. In an application
environment where accountability is vital, a provenance system that stores or
processes p-assertions may be configured to reject p-assertions that are unsigned
or whose signatures are invalid.

The determination of how accurately a p-assertion describes an actual event in
a past process is unrelated to the use of signatures and has to be achieved through
alternative means. This may, for example, involve comparing p-assertions relating
to the same message or actor state made by asserting actors with different levels
of trustworthiness.

3.1 Signed Interaction P-Assertion

The model for a signed interaction p-assertion is shown in Figure 2.
The basic addition to the data model for a normal interaction p-assertion

described in Section 3.3 in [MGJ+06] is the ps:Signature element. This con-
tains the signature of the asserting actor in a manner appropriate to the rep-
resentational format of the p-assertion. If the interaction p-assertion is struc-
tured as xml, signing is performed using the XML Signature Recommendation
[BBF+02], where the ds:Signature element from the XML Signature schema
(http://www.w3.org/TR/xmldsig-core/ xmldsig-core-schema.xsd) is used di-
rectly in place of the ps:Signature element.

6

Page 107 of 182

Figure 2: Signed Interaction P-Assertion

3.2 Signed Actor State P-Assertion

The model for a signed actor state p-assertion is shown in Figure 3.
The basic addition to the data model for a normal actor state p-assertion

described in Section 3.5 in [MGJ+06] is the ps:Signature element. This con-
tains the signature of the asserting actor in a manner appropriate to the rep-
resentational format of the p-assertion. If the actor state p-assertion is struc-
tured as xml, signing is performed using the XML Signature Recommendation
[BBF+02], where the ds:Signature element from the XML Signature schema
(http://www.w3.org/TR/xmldsig-core/ xmldsig-core-schema.xsd) is used di-
rectly in place of the ps:Signature element.

3.3 Signed Relationship P-Assertion

The model for a signed relationship p-assertion is shown in Figure 4.
The basic addition to the data model for a normal relationship p-assertion

described in Section 3.6 in [MGJ+06] is the ps:Signature element. This con-
tains the signature of the asserting actor in a manner appropriate to the rep-
resentational format of the p-assertion. If the relationship p-assertion is struc-
tured as xml, signing is performed using the XML Signature Recommendation
[BBF+02], where the ds:Signature element from the XML Signature schema
(http://www.w3.org/TR/xmldsig-core/ xmldsig-core-schema.xsd) is used di-
rectly in place of the ps:Signature element.

7

Page 108 of 182

Figure 3: Signed Actor State P-Assertion

4 Conclusion

In this document, we have described how the data model and schema for process
documentation [MGJ+06] can be extended in order to accomodate the inclusion
of a Signature element. The inclusion of this element allows p-assertions to be
signed, which links the identities of the asserting actors to these p-assertions
and ensures that these actors cannot subsequently deny accountability for their
contents (the property of non-repudiation). This is important as process docu-
mentation in the form of p-assertions created by an actor merely represents that
actor’s subjective view of events in the process it is documenting.

8

Page 109 of 182

Figure 4: Signed Relationship P-Assertion

9

Page 110 of 182

A Schema for Signed Process Documentation

Below we give the full schema for the data model of process documentation that
includes signatures for interaction, relationship and actor state p-assertions.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns:ps="http://www.pasoa.org/schemas/version023s1/PStruct.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

attributeFormDefault="unqualified" elementFormDefault="qualified"

targetNamespace="http://www.pasoa.org/schemas/version023s1/PStruct.xsd">

<xs:import

namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"

schemaLocation="./wsaddressing.xsd"/>

<xs:annotation>

<xs:documentation>

The P-Structure. This is a logical view of the contents of a provenance store.

The P-Structure contains a set of interaction records that document interactions

between actors.

Author: Paul Groth

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</xs:documentation>

</xs:annotation>

<!-- We define the global elements of the p-struture here so that

They can be referenced by external schemas. Below we define

the types of the p-structure. The prefix ps: refers to this

document. -->

<xs:element name="pstruct" type="ps:PStructure">

<xs:annotation>

<xs:documentation>

(Root Element Start Here) An instance of the

p-structure. Each instance of the p-structure contains a

set of interaction records.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="interactionRecord" type="ps:InteractionRecord">

<xs:annotation>

<xs:documentation>

An interaction record describes the client and service

view of a particular interaction. An interaction record

is identified by an interaction key.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="view" type="ps:View">

<xs:annotation>

<xs:documentation>

A view of an interaction by an actor.

</xs:documentation>

</xs:annotation>

10

Page 111 of 182

</xs:element>

<xs:element name="interactionKey" type="ps:InteractionKey">

<xs:annotation>

<xs:documentation>

An interaction key contains a message source,

a message sink, and an interaction id.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="messageSource" type="wsa:EndpointReferenceType">

<xs:annotation>

<xs:documentation>

The source of the message within the sender.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="messageSink" type="wsa:EndpointReferenceType">

<xs:annotation>

<xs:documentation>

The sink of the message within the receiver.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="interactionId" type="xs:anyURI">

<xs:annotation>

<xs:documentation>

A URI that uniquely identifies this interaction .

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="asserter" type="ps:Asserter">

<xs:annotation>

<xs:documentation>

Each view (either client or service) comes from a

particular actor. The actor that asserts p-assertion

in a particular view is termed the asserter. The identity

of the asserter is documented in the corresponding view inside

the interaction record.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="numberOfExpectedAssertions" type="ps:NumberOfExpectedAssertions">

<xs:annotation>

<xs:documentation>

The number of expected p-assertions to be contained

within a view as documented by the asserting actor.

</xs:documentation>

</xs:annotation>

</xs:element>

<!-- The following elements define the three types of p-assertions. -->

<xs:element name="interactionPAssertion" type="ps:InteractionPAssertion">

<xs:annotation>

<xs:documentation>

Assertion as to the content of an interaction.

</xs:documentation>

</xs:annotation>

</xs:element>

11

Page 112 of 182

<xs:element name="actorStatePAssertion" type="ps:ActorStatePAssertion">

<xs:annotation>

<xs:documentation>

Information supplied by an actor about its state in the

context of this interaction . Examples include the

script that was used in running a service or the time

when an invocation was sent/received.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="relationshipPAssertion" type="ps:RelationshipPAssertion">

<xs:annotation>

<xs:documentation>

Describes a relationship between a p-assertion recorded

in this view and another p-assertion made by the

asserting actor. This can be seen as a triple: subject

identifier, relation, object identifier.

</xs:documentation>

</xs:annotation>

</xs:element>

<!-- End P-assertion defintions -->

<xs:element name="viewKind" type="ps:ViewKind">

<xs:annotation>

<xs:documentation>

Whether a view is from the sender or receiver.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="localPAssertionId" type="ps:LocalPAssertionId">

<xs:annotation>

<xs:documentation>

Uniquely identifies a p-assertion within a view.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="dataAccessor" type="ps:DataAccessor">

<xs:annotation>

<xs:documentation>

An application dependent mechanism for referencing a

piece of data within a p-assertion.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="parameterName" type="xs:anyURI">

<xs:annotation>

<xs:documentation>

The parameter name of a data item referenced

in a relationship p-assertion.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="documentationStyle" type="xs:anyURI">

<xs:annotation>

<xs:documentation>

The style of documentation used when recording

an interaction p-assertion.

</xs:documentation>

</xs:annotation>

</xs:element>

12

Page 113 of 182

<xs:element name="pAssertionDataKey" type="ps:PAssertionDataKey"/>

<xs:element name="objectId" type="ps:ObjectId"/>

<xs:element name="relation" type="xs:anyURI"/>

<xs:element name="globalPAssertionKey" type="ps:GlobalPAssertionKey"/>

<xs:element name="interactionMetaData" type="ps:InteractionMetaData"/>

<xs:element name="interactionContext" type="ps:InteractionContext"/>

<xs:element name="senderViewKind" type="ps:SenderViewKind"/>

<xs:element name="exposedInteractionMetaData" type="ps:ExposedInteractionMetaData"/>

<!-- Type Definitions -->

<xs:complexType name="InteractionKey">

<xs:sequence>

<xs:element ref="ps:messageSource"/>

<xs:element ref="ps:messageSink"/>

<xs:element ref="ps:interactionId"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PStructure">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" ref="ps:interactionRecord"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="InteractionRecord">

<xs:sequence>

<xs:element ref="ps:interactionKey" />

<xs:element minOccurs="0" name="sender" type="ps:View">

<xs:annotation>

<xs:documentation>

The senders’s view of the interaction .

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element minOccurs="0" name="receiver" type="ps:View">

<xs:annotation>

<xs:documentation>

The receiver’s view of the interaction.

WARNING!!! In future revisions the receiver view

may not be allowed to include relationship

p-assertions. If you have an example of the

usage of relationship p-assertions in this view,

please contact the authors of the schema.

Thanks!

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:any namespace="##other" processContents="lax"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Asserter">

<xs:sequence>

<xs:any namespace="##other" maxOccurs="unbounded"

minOccurs="0" />

</xs:sequence>

</xs:complexType>

13

Page 114 of 182

<xs:complexType name="Asserter">

<xs:sequence>

<xs:any namespace="##other" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="NumberOfExpectedAssertions">

<xs:restriction base="xs:positiveInteger"/>

</xs:simpleType>

<!-- Following the WS-Security spec, we allow any type of identiification -->

<xs:complexType name="View">

<xs:sequence>

<xs:element ref="ps:asserter" />

<xs:choice maxOccurs="unbounded" minOccurs="0">

<xs:element maxOccurs="unbounded" minOccurs="0"

ref="ps:interactionPAssertion" />

<xs:element maxOccurs="unbounded" minOccurs="0"

ref="ps:relationshipPAssertion" />

<xs:element maxOccurs="unbounded" minOccurs="0"

ref="ps:actorStatePAssertion" />

<xs:element maxOccurs="unbounded" minOccurs="0"

ref="ps:exposedInteractionMetaData"/>

</xs:choice>

<xs:any namespace="##other" processContents="lax"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="RelationshipPAssertion">

<xs:sequence>

<xs:element ref="ps:localPAssertionId"/>

<xs:element name="subjectId">

<xs:complexType>

<xs:sequence>

<xs:element ref="ps:localPAssertionId"/>

<xs:element ref="ps:dataAccessor" minOccurs="0" />

<xs:element ref="ps:parameterName"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element ref="ps:relation"/>

<xs:element maxOccurs="unbounded" ref="ps:objectId"/>

<xs:element maxOccurs="1" minOccurs="0" name="signature" type="ps:Signature" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="GlobalPAssertionKey">

<xs:sequence>

<xs:element ref="ps:interactionKey"/>

<xs:element ref="ps:viewKind"/>

<xs:element ref="ps:localPAssertionId"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PAssertionDataKey">

<xs:complexContent>

<xs:extension base="ps:GlobalPAssertionKey">

<xs:sequence>

14

Page 115 of 182

<xs:element minOccurs="0" ref="ps:dataAccessor"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="InteractionPAssertion">

<xs:sequence>

<xs:element maxOccurs="1" minOccurs="1" ref="ps:localPAssertionId"/>

<xs:element maxOccurs="1" minOccurs="1" ref="ps:documentationStyle"/>

<xs:element maxOccurs="1" minOccurs="1" name="content" type="ps:Content"/>

<xs:element maxOccurs="1" minOccurs="0" name="signature" type="ps:Signature"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ActorStatePAssertion">

<xs:sequence>

<xs:element maxOccurs="1" minOccurs="1" ref="ps:localPAssertionId"/>

<xs:element maxOccurs="1" minOccurs="0" ref="ps:documentationStyle"/>

<xs:element maxOccurs="1" minOccurs="1" name="content" type="ps:Content"/>

<xs:element maxOccurs="1" minOccurs="0" name="signature" type="ps:Signature"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="LocalPAssertionId">

<xs:union memberTypes="xs:long xs:string xs:anyURI"/>

</xs:simpleType>

<xs:complexType name="ViewKind" abstract="true">

<xs:annotation>

<xs:documentation>

Instance documents must select something that is derived

</xs:documentation>

</xs:annotation>

</xs:complexType>

<xs:complexType name="SenderViewKind">

<xs:complexContent>

<xs:restriction base="ps:ViewKind"></xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ReceiverViewKind">

<xs:complexContent>

<xs:restriction base="ps:ViewKind"></xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ObjectId">

<xs:complexContent>

<xs:extension base="ps:PAssertionDataKey">

<xs:sequence>

<xs:element ref="ps:parameterName"/>

<xs:any namespace="##other" processContents="lax"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="DataAccessor">

<xs:sequence>

<xs:any maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

15

Page 116 of 182

<xs:complexType name="Content">

<xs:sequence>

<xs:any namespace="##any" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="InteractionMetaData">

<xs:sequence>

<xs:choice maxOccurs="unbounded">

<xs:element name="tracer" type="xs:anyURI"/>

<xs:any namespace="##other" maxOccurs="unbounded" minOccurs="0"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

<xs:complexType name="InteractionContext">

<xs:sequence>

<xs:element ref="ps:interactionKey" />

<xs:element ref="ps:viewKind"/> <!-- View Kind of the actor who created the metadata -->

<xs:element ref="ps:interactionMetaData"

maxOccurs="unbounded" minOccurs="0" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="ExposedInteractionMetaData">

<xs:sequence>

<xs:element ref="ps:globalPAssertionKey"/>

<xs:element ref="ps:interactionMetaData"/>

<xs:element maxOccurs="1" minOccurs="0" name="signature" type="ps:Signature" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Signature">

<xs:sequence>

<xs:any namespace="##any" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

References

[BBF+02] Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia,
and Ed Simon. XML Signature Syntax and Processing.
http://www.w3.org/TR/xmldsig-core/, 2002.

[Bra97] Scott Bradner. Key words for use in RFCs to indicate requirement
levels. http://www.ietf.org/rfc/rfc2119.txt, 1997.

[MGJ+06] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan,
and Luc Moreau. Data model for Process Documentation. Technical
report, University of Southampton, June 2006.

16

Page 117 of 182

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, and
Luc Moreau. WS Provenance Glossary. Technical report, Electronics
and Computer Science, University of Southampton, 2006.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. W3C Recommenda-
tion 16 November 1999. http://www.w3.org/TR/xpath, 1999.

17

Page 118 of 182

ws-prov-link

Authors:
Steve Munroe, U. Southampton

Paul Groth, U. Southampton
Sheng Jiang, U. Southampton
Simon Miles, U. Southampton
Victor Tan, U. Southampton

Luc Moreau, U. Southampton
John Ibbotson, IBM

Javier Vazquez, UPC

August 24, 2006

A WS-Addressing Profile for
Distributed Process

Documentation

Status of this Memo

This document provides the specification of a data model for distributed process
documentation and has the status of a working draft. It does not define any
standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright 2006.

Abstract

Process documentation can often be distributed across different provenance stores.
To enable the discovery of related process documentation, a mechanism is re-
quired to link disparate but related process documentation to enable the effective
collection of such documentation in order to answer provenance queries. This doc-
ument represents a WS-addressing profile on distributed process documentation
that provides mechanisms to solve this problem.

1

Page 119 of 182

Contents

1 Introduction 3
1.1 Goals and Requirements . 3

1.1.1 Requirements . 3
1.1.2 Non-Requirements . 3

2 Terminology and Notation 4
2.1 XML Namespaces . 4
2.2 Notational Conventions . 4
2.3 XML Schema Diagrams . 4
2.4 XPath notation . 6

3 Linking 6
3.1 Linking Together Different Views of an Interaction 6
3.2 Linking to Objects of a Relationship P-Assertion 7

4 Identifying Provenance Store Service Ports 8

5 Conclusion 10

2

Page 120 of 182

1 Introduction

Using the provenance recording protocol [GTM+06] actors may record p-assertions
to any number of different provenance stores. This means that the documenta-
tion of a process [MGJ+06] that led to a result can be distributed at different
locations. Given this, there must be some mechanism to retrieve and reconstruct
these p-assertions in order to validate, visualise or replay the represented process.
To facilitate such retrieval, the notion of a link is introduced which, intuitively,
is a pointer to a provenance store. This document defines the schema necessary
to represent linking for distributed process documentation. The XML document
that describes this model is presented in Appendix A.

1.1 Goals and Requirements

The goal of this document is to define a linking mechanism that allows distributed
process documentation to be discovered by queriers [MMG+06]. This document
exists as part of a family of documents specifying provenance. It is most closely
associated to [MMG+06], which describes how queries over process documenta-
tion can be achieved.

1.1.1 Requirements

In meeting this goal, this document must address the following requirements:

• Define the schema for linking different but related actor views for a given
interaction.

• Define the schema to define how to locate p-assertions [MGJ+06] that ap-
pear as objects in a relation.

1.1.2 Non-Requirements

This document does not intend to meet the following requirements:

• Supply definitions and scope of data provenance. This is covered in [TMG+06c].

• Supply a model for the transformation of process documentation — called
documentation styles. This aspect of data provenance is covered in [TMG+06a].

• Supply a model querying process documentation. This aspect of data prove-
nance is described in [MMG+06].

• Supply a model for Provenance security. This aspect of data provenance is
described in [TMG+06b].

3

Page 121 of 182

2 Terminology and Notation

All definitions for the concepts and structures found within this document can
be found in [TGJ+06].

2.1 XML Namespaces

The xml Namespace uri that must be used by implementations of this specifi-
cation is: http://www.pasoa.org/schemas/version023s1/PLinks.xsd

Table 1 lists xml namespaces that are used in this specification. The choice
of any namespace prefix is arbitrary and not semantically significant.

Prefix XML Namespace Specification(s)
pl http://www.pasoa.org/schemas/version023s1/PLinks.xsd [PLinks]
wsa http://schemas.xmlsoap.org/ws/2004/03/addressing [WS-addressing]
xs http://www.w3.org/2001/XMLSchema [XMLSchema]

Table 1: Prefixes and xml Namespaces used in this specification

2.2 Notational Conventions

The keywords “must ”, “mustnot ”, “required ”, “shall ”, “shallnot ”,
“should ”, “shouldnot ”, “recommended ”, “may ”, and “optional ” in
this document are to be interpreted as described in [Bra97].

2.3 XML Schema Diagrams

This document adopts a graphical notation to describe XML Schema. Figure 1
gives an example of a small xml Schema displayed as a diagram, which is now
explained with reference to the figure.

Figure 1 defines the structure of type ts:Test. The type Test contains a
sequence of elements, which we now detail. One element in the sequence is
ts:testName, which can be any type and must occur once and only once in
an instance of ts:Test. ts:Name is followed by element ts:testNumber, which
must contain a string. The ts:testNumber element must occur at least once
and can occur as many times as needed. This is denoted by the “1..unbounded”
under the element. Finally, the sequence contains a choice between two elements,
ts:startTest and ts:stopTest, either of which must contain a date.

Below is a simple of description of the xml Schema diagram format.

4

Page 122 of 182

Figure 1: An example xml Schema diagram

An element (instance) is represented by the
qualified name of the element in the box. By
default an element must occur once and only
once. Where this restriction does not hold, the
text “1..unbounded”, “0..unbounded”, “0..N”,
“1..N” (where N is an integer) appears under
the element box. The left hand number is the
minimum occurrences of the element at the po-
sition in the xml document, the right hand
number is the maximum (with “unbounded”
for no maximum).

A complex type is denoted by a lightly marked
box with the qualified name of the type at the
top left. The structure of the type is given
by the elements, types and control structures
within the box.

A horizontal sequence of dots represents a se-
quence of elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

A vertical sequence of dots represents a choice
between elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

5

Page 123 of 182

2.4 XPath notation

In addition to the XML Schema diagrams, an XPath notation [W3C99] is used
to identify each individual element in the specification along with its context, in
order to describe precisely its meaning and use.

3 Linking

Process documentation may be distributed across any number of provenance
stores, and must be retrieved in order to answer provenance queries. A querier,
finding a fragment of process documentation, must be able to locate related
fragments. This is achieved by providing explicit links to locations where other,
related process documentation can be found.

This document provides a linking mechanism to achieve this using the Web-
Service addressing’s endpoint reference mechanism [GHR06]. Thus, provenance
stores are modelled as Web Services that are locatable at an endpoint reference.

Two forms of linking are required: Linking together process documentation
that represent different views of an interaction, and providing links to data items
that play the role of objects in a relation. Each mechanism is described below.

3.1 Linking Together Different Views of an Interaction

The different views of actors in an interaction can be linked together by providing
links from one set of interaction p-assertions to the location of the associated set
(i.e. the set belonging to the other actor in the interaction). This is achieved by
providing textttviewLinks, which are links that can be found within p-assertions
pointing to the provenance store holding the other view of an interaction.

Linking information is passed between actors as part of an interaction’s meta-
data, and may be contained within a p-header (a full description of which is given
in [MTG+06]). The p-header allows for the provision of extra information about
an interaction in its interactionMetaData element, which contains an extensi-
bility element that can be used to provide application specific information within
interactions, and is shown in the xpath expression below.

/ps:pheader/ps:interactionMetaData/xs:Any

One such use of this extensibility element is to provide the ability to con-
nect process documentation that is spatially distributed via the use of the link
mechanism. This can be achieved by redefining the Any element as a viewLink,
resulting in the following xpath expression:

/ps:pheader/ps:interactionMetaData/pl:viewLink

6

Page 124 of 182

This model is described by a schema document represented by Figure 2.

Figure 2: A WS-addressing endpoint reference pointing to the location of another
view on an interaction

The document content is further described below.

/pl:viewLink

This element represents a link to the location of an actor’s view of an
interaction.

/pl:viewLink/pl:provenanceStoreRef

A viewLink is instantiated as a WS-addressing EndpointReference point-
ing to the provenance store where the associated view for an interaction
can be found.

The instantiation of an EndpointReference can be achieved by utilising WS-
Addressing’s ReferenceParameters element. This is described in Section 4.

3.2 Linking to Objects of a Relationship P-Assertion

Relationship p-assertions allow uni-directional relationships between both mes-
sages and data to be expressed. Relationship p-assertions are modelled as one-
to-many triples between data or messages, where the domain of a relationship
is called the subject and the range is the set of objects (the complete model is
presented in the Data Model for Process Documentation document [MGJ+06]).
The triple consists of a subject identifier (subjectId), a relation, and several
object identifiers (objectIds).

Relationship p-assertions express causal relationships, where the subject of
the relationship is a data item in a sent message, i.e. an output, and the objects
are entities in messages received by the same actor, i.e. inputs, where the inputs
had caused the output to be as it is. An objectId element contains several child
elements and is fully defined in [MGJ+06]. In distributed process documentation
scenarios, given that an actor can use multiple provenance stores to document
its involvement in a process, an objectId element will contain an objectLink

element giving the address of the provenance store in which the data item acting
as an object in a relationship is kept. In the complete data model for process
documentation presented in [MGJ+06], this element instantiates the element in

7

Page 125 of 182

the objectId structure contained within a relationship p-assertion as shown by
the xpath below:

/ps:relationshipPAssertion/ps:objectId/xs:Any

The Any element is then instantiated in the WS-addressing profile by an ob-
ject link as follows:

/ps:relationshipPAssertion/ps:objectId/pl:objectLink

Object links are modelled as shown in Figure 3. The model is further described
as follows.

Figure 3: An WS-addressing endpoint reference pointing to the location of an
object in a relation

/pl:objectLink

This element represents a link to the location of a data item that acts as
an object in a relationship p-assertion.

/pl:objectlink/pl:provenanceStoreRef

The link to the location of a data item acting as an object in a relationship p-
assertion is instantiated as a WS-addressing EndpointReference pointing
to the provenance store where the data item can be found.

4 Identifying Provenance Store Service Ports

Provenance stores offer different functionality via their public interfaces exposed
as ports. When following a link to a provenance store it is necessary to be
able to identify the correct port in order to perform the requested operation.
The WS-addressing’s EndpointReference provides a number of characteristics to
enable such identification via ReferenceParameters. The ReferenceParameter

element is defined as an xs:Any, thus it allows for extensibility and enables the
specification of a PortContext type to provide a way to identify which port is to
be used in a communication with a provenance store. Below is shown an instance
of a PortContext type that defines a key-value pair. The key is given as the

8

Page 126 of 182

portName and the value is given as the context of the port, i.e. the identifier
used to identify the port.

<pl:portContext>
<pl:portName>XQuery</pl:portName>
<pl:context>xquery</pl:context>

</pl:portContext>

A ProvenanceStoreRef is now defined in which the ReferenceParameters

element is used to identify two ports, one for recording and one for querying,
using the portContext type.

<wsa:EndpointReference>
<wsa:Address>http://www.pasoa.org/provenancestore1/</wsa:Address>

<wsa:ReferenceParameters>
<pl:portContext>

<pl:portName>Record</pl:portName>
<pl:context>myrecord</pl:context>

</pl:portContext>
<pl:portContext>

<pl:portName>XQuery</pl:portName>
<pl:context>superxquery</pl:context>

</pl:portContext>
...

</wsa:ReferenceParameters>
</wsa:EndpointReference>

In this way connecting to a provenance store entails specifying the EndpointReference
of the provenance store plus the context for the required port. The following ex-
ample shows an EndpointReference that identifies a record port.

http://www.pasoa.org/provenancestore1/myrecord

The formal model of this is further described below.

/pl:provenanceStoreRef/wsa:ReferenceParameters/pl:portContext

This element holds the information about one of this provenance store’s ports.

/pl:provenanceStoreRef/wsa:ReferenceParameters/pl:portContext/pl:portName

The name of the port for this provenance store.

/pl:provenanceStoreRef/wsa:ReferenceParameters/pl:portContext/pl:context

The context of the specified port for this provenance store.

It should be noted that in cases where process documentation must be kept for
long periods of time, it is recommended that the references used for machines and
ports should use virtual URI’s that can the n be mapped onto real IP addresses,
since physical machines may be upgraded or changed over time.

9

Page 127 of 182

5 Conclusion

This document has provided a WS-addressing profile for the distribution of pro-
cess documentation. It provides a detailed data model of a linking mechanism
instantiated using WS-addressing EndpointReferences. This enables process
documentation necessary to connect different views of an interaction to be found,
and to enable data items acting as objects in a relationship p-assertion to be dis-
covered.

Other forms of linking could be considered where process documentation is
distributed but not stored in provenance stores. Specific profiles should be defined
for each of these.

10

Page 128 of 182

Appendix A

The following XML document describes the linking types and elements used in
this document.

<?xml version="1.0" encoding="UTF-8"?> <xs:schema

xmlns:pl="http://www.pasoa.org/schemas/version023s1/distribution/PLinks.xsd"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.pasoa.org/schemas/version023s1/PLinks.xsd"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:annotation>

<xs:documentation>

Defines extensions to the P-Structure that allow for linking between

provenance stores from within the p-structure.

Author: Paul Groth

Last Modified:15 May 2006

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</xs:documentation>

</xs:annotation>

<xs:import namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"

schemaLocation="../wsaddressing.xsd"/>

<xs:element name="viewLink" type="pl:Link">

<xs:annotation>

<xs:documentation>

A link between this provenance store and another provenance

store. Where the provenance store linked to will contain

the other view of the interaction record.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="objectLink" type="pl:Link">

<xs:annotation>

<xs:documentation>

A link between this provenance store and another provenance

store. Where the provenance store linked to will contain the p-assertion identified by the

p-assertion data key in the object id where this link is located.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:complexType name="Link">

<xs:sequence>

<xs:element name="provenanceStoreRef" type="wsa:EndpointReferenceType">

<xs:annotation>

<xs:documentation>

The actual link to the Provenance Store.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:schema>

11

Page 129 of 182

References

[Bra97] Scott Bradner. Key words for use in RFCs to indicate requirement levels.
http://www.ietf.org/rfc/rfc2119.txt, 1997.

[GHR06] Martin Gudgin, Marc Hadley, and Tony Rogers. Web ser-
vices addressing 1.0 - core w3c recommendation 9 may 2006.
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/, 2006.

[GTM+06] Paul Groth, Victor Tan, Steve Munroe, Sheng Jiang, Simon Miles, and
Luc Moreau. Process Documentation Recording Protocol. Technical re-
port, University of Southampton, June 2006.

[MGJ+06] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan, and
Luc Moreau. Data model for Process Documentation. Technical report,
University of Southampton, June 2006.

[MMG+06] Simon Miles, Steve Munroe, Paul Groth, Sheng Jiang, Victor Tan, John
Ibbotson, and Luc Moreau. Process Documentation Query Protocol. Tech-
nical report, University of Southampton, June 2006.

[MTG+06] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, and
Luc Moreau. A SOAP Binding For Process Documentation. Technical
report, University of Southampton, June 2006.

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, and
Luc Moreau. WS Provenance Glossary. Technical report, Electronics and
Computer Science, University of Southampton, 2006.

[TMG+06a] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and
Luc Moreau. Basic Transformation Profile for Documentation Style. Tech-
nical report, University of Southampton, June 2006.

[TMG+06b] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and
Luc Moreau. Data Model for Provenance Security. Technical report,
University of Southampton, June 2006.

[TMG+06c] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and
Luc Moreau. The Provenance Standardisation Vision. Technical report,
University of Southampton, June 2006.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation
16 November 1999. http://www.w3.org/TR/xpath, 1999.

12

Page 130 of 182

ws-prov-ds

Authors:
Victor Tan, U. Southampton

Paul Groth, U. Southampton,
Sheng Jiang, U. Southampton
Simon Miles, U. Southampton

Steve Munroe, U. Southampton
Sofia Tsasakou, U. Southampton

Luc Moreau, U. Southampton

November 23, 2006

Basic Transformation Profile for
Documentation Style

Status of this Memo

This document provides information to the community regarding the specifica-
tion of a data model for documentation style. It is intended to supplement the
data model for process documentation [MGJ+06], and to be read in conjunction
with that document. This document does not define any standards or technical
recommendations. Distribution is unlimited.

Copyright Notice

Copyright 2006.

1

Page 131 of 182

Abstract

The data model for process documentation [MGJ+06] provides descriptions of
different ways in which processes may be documented. The primary method
involves recording messages exchanged between interacting services, as well as the
state of those services at the time of message exchange. These messages and states
may have their contents transformed when recorded due to application dependent
security and scalability requirements. The documentation style describes the
types of transformations that can be performed. An actor that processes the
recorded documentation must understand the transformations performed on it
in order to interpret or utilise it appropriately. This document is a profile of
several basic documentation style transformations that are likely to be useful in
application domains that use process documentation. It is not intended to be
exhaustive; other profiles may be provided of alternative documentation style
transformations which may be generic or more specific in nature.

2

Page 132 of 182

Contents

1 Introduction 4
1.1 Goals and Requirements . 4

1.1.1 Requirements . 4
1.1.2 Non-Requirements . 4

2 Terminology and Notation 5
2.1 XML Namespaces . 5
2.2 Notational Conventions . 5
2.3 XML Schema Diagrams . 5
2.4 XPath notation . 7

3 Data Model for Transformation Description Document 7
3.1 Transform Definition and Transform Operation 8
3.2 Verbatim Documentation Style 9
3.3 Reference Documentation Style 9
3.4 Signature Documentation Style 11
3.5 Encryption Documentation Style 13
3.6 Composite Sequence Documentation Style 15
3.7 Example . 15

4 Conclusion 20

A Schema for transformation definition document 21

3

Page 133 of 182

1 Introduction

The documentation style data model is presented here in the context of the
process documentation model [MGJ+06]. In the process documentation model,
p-assertions are atomic units of process documentation of which there exists
three forms: relationship p-assertions, actor state p-assertions and interaction
p-assertions. When an actor in a provenance-aware system documents an in-
teraction, it constructs an interaction p-assertion, which states the content of
a message received or sent by that actor. An actor can also make assertions
about its internal state in the context of a specific interaction through an actor
state p-assertion. This can be the state of the actor prior to or after a message
exchange. Relationship p-assertions allow uni-directional relationships between
both messages and data to be expressed.

The activity of constructing an interaction p-assertion from a message can
be considered as a single atomic transformation. This transformation needs to
be adequately defined by the actor creating that p-assertion in order that actors
who retrieve that p-assertion from the provenance store are able to understand
the nature of the transformation applied. This is equally true for an actor state
p-assertion. Documentation styles are essentially descriptions of the types of
transformations that can be applied to a message or to the internal state of
an actor. Relationship p-assertions do not utilize documentation styles; this is
further clarified in Section 3.

1.1 Goals and Requirements

The goal of this document is to develop an open, interoperable approach to
process documentation.

1.1.1 Requirements

This specification intends to meet the following requirements:

• Provide a profile of a data model that describes some basic documentation
style transformations.

• Provide extensibility in the data model for describing new types of docu-
mentation style transformations.

1.1.2 Non-Requirements

This document does not intend to meet the following requirements:

• Provide an implementation specific approach to realizing these documenta-
tion style transformations.

4

Page 134 of 182

• Provide an exhaustive list of documentation style transformations relevant
to process documentation.

2 Terminology and Notation

All definitions for the concepts and structures found within this document can
be found in [TGJ+06].

2.1 XML Namespaces

The xml Namespace uri that must be used by implementations of this specifi-
cation is: http://www.pasoa.org/schemas/version023s1/docstyle

Table 1 lists xml namespaces that are used in this specification. The choice
of any namespace prefix is arbitrary and not semantically significant.

Prefix XML Namespace Specification(s)
pds http://www.pasoa.org/schemas/version023s1/ [DocumentationStyle]

docstyle
xenc http://www.w3.org/2001/04/xmlenc# [XML Encryption]
ds http://www.w3.org/2000/09/xmldsig# [XML Signature]
xs http://www.w3.org/2001/XMLSchema [XML Schema]

Table 1: Prefixes and xml Namespaces used in this specification

2.2 Notational Conventions

The keywords “must ”, “mustnot ”, “required ”, “shall ”, “shallnot ”,
“should ”, “shouldnot ”, “recommended ”, “may ”, and “optional ” in
this document are to be interpreted as described in [Bra97].

2.3 XML Schema Diagrams

This document adopts a graphical notation to describe XML Schema. Figure 1
gives an example of a small xml Schema displayed as a diagram, which is now
explained with reference to the figure.

Figure 1 defines the structure of type ts:Test. The type Test contains a
sequence of elements, which we now detail. One element in the sequence is
ts:testName, which can be any type and must occur once and only once in an
instance of ts:Test. ts:Name is followed by element ts:testNumber, which must
contain a string. The ts:testNumber element must occur at least once and can
occur as many times as needed. This is denoted by the “1..unbounded” un-
der the element. Finally, the sequence contains a choice between two elements,
ts:startTest and ts:stopTest, either of which must contain a date.

5

Page 135 of 182

Figure 1: An example xml Schema diagram

Below is a simple of description of each of the parts of the xml Schema
diagram format.

An element (instance) is represented by the
qualified name of the element in the box. By
default an element must occur once and only
once. Where this restriction does not hold, the
text “1..unbounded”, “0..unbounded”, “0..N”,
“1..N” (where N is an integer) appears under
the element box. The left hand number is the
minimum occurrences of the element at the po-
sition in the xml document, the right hand
number is the maximum (with “unbounded”
for no maximum).

A complex type is denoted by a lightly marked
box with the qualified name of the type at the
top left. The structure of the type is given
by the elements, types and control structures
within the box.

A horizontal sequence of dots represents a se-
quence of elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

A vertical sequence of dots represents a choice
between elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

6

Page 136 of 182

2.4 XPath notation

In addition to the XML Schema diagrams, an XPath notation [W3C99] is used
to identify each individual element in the specification along with its context, in
order to describe precisely its meaning and use.

3 Data Model for Transformation Description

Document

In the process documentation model [MGJ+06], the content of an interaction p-
assertion is intended to provide information about a single message exchanged
between two actors. In some cases, the content may simply be the actual mes-
sage itself verbatim. However, there may often be an application-specific need
to transform or modify the actual message in some way before storing it as the
content of an interaction p-assertion. For example, parts of the message may
contain highly sensitive information and there may be a corresponding security
requirement within the application environment to obscure these parts in some
manner or remove them prior to placing the message itself into a p-assertion. A
message may contain a large amount of raw data that is irrelevant to process doc-
umentation; the raw data could effectively be replaced with an external reference
to minimize the size of the interaction p-assertion created.

Actor state p-assertions contain state information about an actor which may
be structured in an arbitrary fashion by the actor concerned. This structured
information can also be transformed in the same ways as interaction p-assertions,
based on similar motivations as well.

Documentation style transformations then refer in general to all the possible
types of transformations that can be applied to a message exchanged between
actors or state information provided by an actor in order to obtain a transformed
output that will become the content of either an interaction p-assertion or actor
state p-assertion. It is possible, but not mandatory, that documentation style
transformations are reversible i.e. the content of a p-assertion can be reverse-
transformed to produce the input that it was originally derived from.

The information required to perform a specific transformation must be pro-
vided as a document (the transformation definition document). The transfor-
mation is performed using this document to produce an output that should be
properly typed. For the case when the output of a transformation is an xml
document, this requires that it should be well formed and be capable of being
validated against a schema. The transformed output is then stored within a p-
assertion while the transformation definition document is then made available at
a repository. This should be accessible to all actors that process p-assertions in
order to allow them to understand how the contents of a specific p-assertion was
created.

7

Page 137 of 182

Documentation style transformations shall not be applicable to relationship
p-assertions. The information in the fields of a relationship p-assertion have an
explicit meaning within the context of the process documentation data model,
and must not be altered in any way in order to ensure that provenance queries
that use them produce correct results.

3.1 Transform Definition and Transform Operation

The structure of a transformation definition document is shown in Figure 2. It
describes a documentation style transformation and the nature of the input and
output (an xml document, Java object, corba object) that it functions on.
Both the input and output are application dependent and may not be based
on the same technology. For example, a transformation could operate on a
Java object as an input and produce an xml document as output. The loca-
tion of the transformation definition document must be specified as a URI in
the /ps:interactionPAssertion /ps:documentationStyle component of an
interaction p-assertion (Figure 4 [MGJ+06]). The constituent components of this
structure as described below must be provided, unless otherwise stated.

Figure 2: Model for a transform definition

/ds:transformDefinition

This is the root element and provides a logical structure for the document
that describes the documentation style transform operation

/ds:transformDefinition/ds:inputTechnology

This element specifies the underlying technology for the object to be trans-
formed, whether it is an xml document, corba object, etc.

/ds:transformDefinition/ds:outputTechnology

This element specifies the technology for the transformed object, whether
it is an xml document, corba object, etc.

8

Page 138 of 182

/ds:transformDefinition/ds:transformOperation

This component provides the relevant information required in the execution
of the specific transform operation.

All the documentation style transformations that are described in the remain-
ing sections in this document shall be extensions of the /ds:transformDefinition
/ds:transformOperation element, each containing information specific to them-
selves. Any new user-defined documentation style should be defined as an in-
stance in a similar manner as well.

3.2 Verbatim Documentation Style

The verbatim documentation style (Figure 3) denotes a null transformation ap-
plied to a given input; the output of the transformation is identical to its input.
The main intention of this style is to indicate the creation of an interaction p-
assertion where the contents of the p-assertion is the exchanged message as it
is.

Figure 3: Model for a verbatim documentation style

/ds:verbatim

This is the root element for the description of the verbatim documentation
style.

3.3 Reference Documentation Style

The reference documentation style (Figure 4) denotes a transformation of an in-
put by which a part of (or the whole of) its contents has been replaced by a
reference to the location where the actual contents can be found. This transfor-
mation operation may include the computation of a digest on the contents to be
replaced. The digest, if included, shall be appended to the transformed message
in a manner that associates it with the reference URI. The primary function-
ality of the digest is to verify that in a reverse transformation, data retrieved
from a reference URI is identical to the data on which the digest was originally
computed.

For the case of an xml document, the transformed result shall have a new
namespace corresponding to the additional elements appended into it. In addi-
tion, namespaces of existing untransformed elements in the original document

9

Page 139 of 182

may be changed to new namespaces in the transformed document in order to
reflect that a transformation has occurred. If such namespace change is desired,
a list mapping namespaces in the original document to new namespaces must be
provided to allow the transformation functionality to make these namespace sub-
stitutions when constructing the transformed document. Subsequent validation
of the output document against a specified schema, if so desired, shall then be
based on these new namespaces.

Figure 4: Model for a reference documentation style

/ds:reference

This is the root element for the description of the reference documentation
style.

/ds:reference/ds:nameSpaceMapping

This element is a list mapping namespace URIs in the original xml doc-
ument to namespace URIs in the transformed xml document and must
be provided if the original document contains any namespace URIs. Such
mapping must encompass all namespaces in the original document in order

10

Page 140 of 182

for the transformed document to be meaningful. The namespace mapping
must be applied in an equivalent manner for a reverse transformation to
produce the original document.

/ds:reference/ds:Accessor

This element is used to specify the appropriate part of the input that the
reference transformation shall operate on.

/ds:reference/ds:referenceURI

This element shall provide the URI for the location where the referenced
contents can be found.

/ds:reference/ds:digestInfo

This optional element specifies that a digest operation is computed on
the referenced contents using the digest algorithm value specified in the
digestAlgo and the digest provider value specified in the digestProvider
elements. If not provided, no digest is computed.

The schema for the new elements introduced into the transformed xml doc-
ument is shown below, with the prefix rd.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://www.gridprovenance.org/documentationstyle/referenceOutput"

elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns:rd="http://www.gridprovenance.org/documentationstyle/referenceOutput"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="referenceURI" type="xs:anyURI"/>

<xs:element name="referenceDigest" type="xs:string"/>

</xs:schema>

3.4 Signature Documentation Style

The security-signing documentation style (Figure 5) denotes a transformation of
an input by which a part of (or the whole of) its contents has been signed. The
signature itself shall appear as a new element in the transformed output.

/ds:sign

This is the root element for the description of the signature documentation
style.

/ds:sign/ds:nameSpaceMapping

This element is a list mapping namespace URIs in the original xml doc-
ument to namespace URIs in the transformed xml document and must
be provided if the original document contains any namespace URIs. Such

11

Page 141 of 182

Figure 5: Model for a signature documentation style

mapping must encompass all namespaces in the original document in order
for the transformed document to be meaningful. The namespace mapping
must be applied in an equivalent manner for a reverse transformation to
produce the original document.

/ds:sign/ds:Accessor

This element is used to specify the appropriate part of the input that the
signature transformation shall operate on.

/ds:sign/ds:subjectX500Name

This element is used to specify the subject X500 distinguished name of the
X509 certificate [HFPS99] used in the signature operation.

/ds:sign/ds:issuerX500Name

This element is used to specify the issuer X500 distinguished name of the
X509 certificate [HFPS99] used in the signature operation.

/ds:sign/ds:signatureAlgorithm

This element is used to specify the signature algorithm used.

12

Page 142 of 182

For an xml document, signing should be performed using the XML
Signature Recommendation [BBF+02], and the corresponding schema for
the new signature element in the transformed output is given at
http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd.

3.5 Encryption Documentation Style

The encryption documentation style (Figure 6) denotes a transformation of an
input by which a part of (or the whole of) its contents has been encrypted.
The encrypted content shall appear in replacement of the original content in the
transformed output.

Figure 6: Model for an encryption documentation style

/ds:encrypt

This is the root element for the description of the encryption documentation
style.

13

Page 143 of 182

/ds:encrypt/ds:nameSpaceMapping

This element is a list mapping namespace URIs in the original xml doc-
ument to namespace URIs in the transformed xml document and must
be provided if the original document contains any namespace URIs. Such
mapping must encompass all namespaces in the original document in order
for the transformed document to be meaningful. The namespace mapping
must be applied in an equivalent manner for a reverse transformation to
produce the original document.

/ds:encrypt/ds:Accessor

This element is used to specify the appropriate part of the input that the
encryption transformation shall operate on.

/ds:encrypt/ds:keyEncryptAlgorithm

This element is used to specify the encryption algorithm to be applied to
the secret key used in the encryption operation.

/ds:encrypt/ds:keyAlgorithmURI

This element is used to specify the URI describing the previous algorithm.

/ds:encrypt/ds:dataEncryptAlgorithm

This element is used to specify the encryption algorithm to be applied to
the designated contents to be encrypted in the encryption operation.

/ds:encrypt/ds:dataAlgorithmURI

This element is used to specify the URI describing the encryption algorithm
above.

/ds:encrypt/ds:dataEncryptKeySize

This element is used to specify the size of the secret key used in encrypting
the designated contents.

For an xml document, the encryption should be performed using the
XML Encryption Recommendation [IDS02], and the corresponding schema
for the new signature element in the transformed output is given at
http://www.w3.org/TR/xmlenc-core/xenc-schema.xsd.

14

Page 144 of 182

3.6 Composite Sequence Documentation Style

A composite sequence documentation style denotes a sequence of documentation
styles or transformations that is applied in succession to a given input (message or
actor state information). These transformations include the previously discussed
documentation styles (encryption, signature, reference and verbatim), and may
also include the composite style itself. The output of a transformation in a
sequence becomes input to the next transformation in that same sequence, so
that the final output of the documentation style is an initial input that has
undergone all transformations specified within the sequence. Conversely, a reverse
transformation involves the application of all the transformations in a sequence
in a reversed order on a transformed input.

Figure 7: Model for composite sequence documentation style

/ds:compositeSequence

This is the root element for the description of the composite documentation
style.

/ds:compositeSequence/ds:transformOperation

This element is a sequence of documentation style transformations un-
bounded in length, which may additionally include other composite se-
quence transformations within it.

3.7 Example

We demonstrate how documentation style transformations affect a given input
that is an xml document using an example involving the a composite sequence
transformation that encapsulates an encryption and reference documentation
style. Consider two actors that exchange a single xml structured message be-
tween each other as shown in Figure 8.

This original message can optionally be validated against a schema prior to
performing transformation to ensure that errors do not arise from attempting to
transform an incorrectly typed input. An example of such a schema for the above
message is shown in Figure 9.

Consider now a composite transformation involving an encryption documen-
tation style followed by a reference documentation style to be enacted upon this

15

Page 145 of 182

<?xml version="1.0" encoding="UTF-8"?>

<pd:author xmlns:pd="http://www.myexample.com/personaldetails"

xmlns:ad="http://www.myexample.com/addressdetails">

<pd:firstname>John</pd:firstname>

<pd:lastname>Doe</pd:lastname>

<ad:address>

<ad:street>123 High Street</ad:street>

<ad:city>Gotham City</ad:city>

</ad:address>

<pd:biography>He led an undistinguished life explained in 200 pages</pd:biography>

</pd:author>

Figure 8: Original xml message

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.myexample.com/personaldetails"

elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ad="http://www.myexample.com/addressdetails">

<xs:element name="author">

<xs:complexType>

<xs:sequence>

<xs:element name="firstname" type="xs:string"/>

<xs:element name="lastname" type="xs:string"/>

<xs:element ref="ad:address" />

<xs:element name="biography" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 9: Original xml message schema

sample message in order to produce a transformed message, that will become the
content of an interaction p-assertion. The first transformation specifies that the
contents of the pd:lastname element be encrypted. The next transformation
specifies that the contents of the pd:biography element be removed and stored
at a public repository, and the URI pointing to this stored content is placed in
the transformed message along with a digest initially computed on the removed
contents. The transformation definition document that specifies this composite
transformation itself is shown in Figure 10.

The Accessor element within both transformations specifies XPath expres-
sions that identify the specific element within the original message that would
be operated upon. Also, the two namespaces present in the original message are
now mapped to new namespaces through the namespace mapping specified in
both transformations. The transformed message is shown in Figure 11.

This transformed message can optionally be validated against an output
schema if one is provided. This output schema for the transformed message can be

16

Page 146 of 182

<transformDefinition xmlns="http://www.gridprovenance.org/documentationstyle"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:pds="http://www.gridprovenance.org/documentationstyle">

<inputTechnology>XML</inputTechnology>

<outputTechnology>XML</outputTechnology>

<transformOperation xsi:type="CompositeSequence">

<transformOperation xsi:type="Encrypt">

<nameSpaceMapping>

<originalNameSpace>http://www.myexample.com/personaldetails</originalNameSpace>

<transformedNameSpace>http://www.myexample.com/personaldetails/enc</transformedNameSpace>

</nameSpaceMapping>

<nameSpaceMapping>

<originalNameSpace>http://www.myexample.com/addressdetails</originalNameSpace>

<transformedNameSpace>http://www.myexample.com/addressdetails/enc</transformedNameSpace>

</nameSpaceMapping>

<Accessor>author/lastname</Accessor>

<keyEncryptAlgorithm>DESede</keyEncryptAlgorithm>

<keyAlgorithmURI>http://www.w3.org/2001/04/xmlenc#kw-tripledes</keyAlgorithmURI>

<dataEncryptAlgorithm>AES</dataEncryptAlgorithm>

<dataAlgorithmURI>http://www.w3.org/2001/04/xmlenc#aes128-cbc</dataAlgorithmURI>

<dataEncryptKeySize>128</dataEncryptKeySize>

</transformOperation>

<transformOperation xsi:type="Reference">

<nameSpaceMapping>

<originalNameSpace>http://www.myexample.com/personaldetails/enc</originalNameSpace>

<transformedNameSpace>http://www.myexample.com/personaldetails/enc/ref</transformedNameSpace>

</nameSpaceMapping>

<nameSpaceMapping>

<originalNameSpace>http://www.myexample.com/addressdetails/enc</originalNameSpace>

<transformedNameSpace>http://www.myexample.com/addressdetails/enc/ref</transformedNameSpace>

</nameSpaceMapping>

<Accessor>author/biography</Accessor>

<referenceURI>http://www.mystorage.com/biography.txt</referenceURI>

<digestInfo>

<digestAlgorithm>MD5</digestAlgorithm>

<digestProvider>Java</digestProvider>

</digestInfo>

</transformOperation>

</transformOperation>

</transformDefinition>

Figure 10: Transformation definition document

17

Page 147 of 182

<?xml version="1.0" encoding="UTF-8"?>

<pd:author xmlns:pd="http://www.myexample.com/personaldetails/enc/ref"

xmlns:ad="http://www.myexample.com/addressdetails/enc/ref"

xmlns:rd="http://www.gridprovenance.org/documentationstyle/referenceOutput"

xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

<pd:firstname>John</pd:firstname>

<pd:lastname>

<xenc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Content">

<xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc" />

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<xenc:EncryptedKey>

<xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#kw-tripledes"/>

<xenc:CipherData>

<xenc:CipherValue>

dbZHVtHrAXoWDX3awB0G7RAYWd/lMgQz4o4B+wEh4yg=

</xenc:CipherValue>

</xenc:CipherData>

</xenc:EncryptedKey>

</KeyInfo>

<xenc:CipherData>

<xenc:CipherValue>

g9Fe6ppIg4aN0wpxPA5KFUz+==

</xenc:CipherValue>

</xenc:CipherData>

</xenc:EncryptedData>

</pd:lastname>

<ad:address>

<ad:street>123 High Street</ad:street>

<ad:city>Gotham City</ad:city>

</ad:address>

<pd:biography>

<rd:referenceURI>http://www.mystorage.com/biography.txt</rd:referenceURI>

<rd:referenceDigest>1nIldFXC2BVSbqE9njc6gQ==</rd:referenceDigest>

</pd:biography>

</pd:author>

Figure 11: Transformed xml message

18

Page 148 of 182

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.myexample.com/personaldetails/enc/ref"

elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ad="http://www.myexample.com/addressdetails/enc/ref"

xmlns:rd="http://www.gridprovenance.org/documentationstyle/referenceOutput"

xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

<xs:element name="author">

<xs:complexType>

<xs:sequence>

<xs:element name="firstname" type="xs:string"/>

<xs:element name="lastname">

<xs:complexType>

<xs:sequence>

<xs:element ref="xenc:EncryptedData"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element ref="ad:address" />

<xs:element name="biography">

<xs:complexType>

<xs:sequence>

<xs:element ref="rd:referenceURI"/>

<xs:element ref="rd:referenceDigest"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 12: Transformed xml message schema

predefined prior to runtime by the application user, or generated at runtime using
the schema for the original message and the transformation definition document.
Such an output schema should contain the new namespaces for the untransformed
elements as well reference schemas for the new elements introduced as a result of
the transformation. An example of such an output schema, which incorporates
the predefined schema for reference elements (Section 3.3), as well as the schema
for XML Encryption (http://www.w3.org/TR/xmlenc-core/xenc-schema.xsd)
is shown in Figure 12.

The schema for the original and transformed message can be stored in a public
repository in order for an actor to retrieve them and use them in a reverse trans-
formation when processing interaction p-assertions. Optionally, an actor may
also construct its own output schema for validation purposes using the names-
pace mapping provided in the transformation definition document.

19

Page 149 of 182

4 Conclusion

In this document, we have presented a data model for some standard documenta-
tion style transformations that can be applied to either a message or actor state
in order to produce a transformed output that becomes the content of an inter-
action p-assertion or actor state p-assertion. An example is provided to illustrate
how the model can be used on xml type documents. This model is intended as
a complement to the process documentation data model [MGJ+06], which de-
scribes the logical organisation of process documentation as well as models of
different forms of p-assertions

20

Page 150 of 182

A Schema for transformation definition docu-

ment

Below we give the full schema for a transformation definition document that is
structured in xml.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.gridprovenance.org/documentationstyle"

elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns:ds="http://www.gridprovenance.org/documentationstyle"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="transformDefinition" type="ds:TransformDefinition"/>

<xs:element name="transformOperation" type="ds:TransformOperation"/>

<xs:element name="nameSpaceMapping" type="ds:NameSpaceMapping"/>

<xs:element name="verbatim" type="ds:Verbatim"/>

<xs:element name="sign" type="ds:Sign"/>

<xs:element name="encrypt" type="ds:Encrypt"/>

<xs:element name="reference" type="ds:Reference"/>

<xs:element name="compositeSequence" type="ds:CompositeSequence"/>

<xs:complexType name="TransformDefinition">

<xs:sequence>

<xs:element name="inputTechnology" type="xs:string"/>

<xs:element name="outputTechnology" type="xs:string"/>

<xs:element ref="ds:transformOperation"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="TransformOperation" abstract="true"/>

<xs:complexType name="Verbatim">

<xs:complexContent>

<xs:extension base="ds:TransformOperation"/>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Sign">

<xs:complexContent>

<xs:extension base="ds:TransformOperation">

<xs:sequence>

<xs:element ref="ds:nameSpaceMapping" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="Accessor" type="xs:string"/>

<xs:element name="subjectX500Name" type="xs:string"/>

<xs:element name="issuerX500Name" type="xs:string"/>

<xs:element name="signatureAlgorithm" type="xs:string"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Encrypt">

<xs:complexContent>

<xs:extension base="ds:TransformOperation">

<xs:sequence>

<xs:element ref="ds:nameSpaceMapping" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="Accessor" type="xs:string"/>

<xs:element name="keyEncryptAlgorithm" type="xs:string" minOccurs="0"/>

<xs:element name="keyAlgorithmURI" type="xs:anyURI" minOccurs="0"/>

<xs:element name="dataEncryptAlgorithm" type="xs:string"/>

<xs:element name="dataAlgorithmURI" type="xs:anyURI"/>

<xs:element name="dataEncryptKeySize" type="xs:integer"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Reference">

21

Page 151 of 182

<xs:complexContent>

<xs:extension base="ds:TransformOperation">

<xs:sequence>

<xs:element ref="ds:nameSpaceMapping" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="Accessor" type="xs:string"/>

<xs:element name="referenceURI" type="xs:anyURI"/>

<xs:element name="digestInfo" type="ds:DigestInfo" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="CompositeSequence">

<xs:complexContent>

<xs:extension base="ds:TransformOperation">

<xs:sequence>

<xs:element ref="ds:transformOperation" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="NameSpaceMapping">

<xs:sequence>

<xs:element name="originalNameSpace" type="xs:string"/>

<xs:element name="transformedNameSpace" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="DigestInfo">

<xs:sequence>

<xs:element name="digestAlgorithm" type="xs:string"/>

<xs:element name="digestProvider" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

References

[BBF+02] Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia,
and Ed Simon. XML Signature Syntax and Processing.
http://www.w3.org/TR/xmldsig-core/, 2002.

[Bra97] Scott Bradner. Key words for use in RFCs to indicate requirement
levels. http://www.ietf.org/rfc/rfc2119.txt, 1997.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. Request For Comment:
Internet X.509 Public Key Infrastructure Certificate and CRL Profile.
http://www.ietf.org/rfc/rfc2459.txt, 1999.

[IDS02] Takeshi Imamura, Blair Dillaway, and Ed Simon. XML Encryption
Syntax and Processing. http://www.w3.org/TR/xmlenc-core/, 2002.

[MGJ+06] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan,
and Luc Moreau. Data model for Process Documentation. Technical
report, University of Southampton, June 2006.

22

Page 152 of 182

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, and
Luc Moreau. WS Provenance Glossary. Technical report, Electronics
and Computer Science, University of Southampton, 2006.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. W3C Recommenda-
tion 16 November 1999. http://www.w3.org/TR/xpath, 1999.

23

Page 153 of 182

ws-prov-pquery-xpath

Authors:
Simon Miles, U. Southampton
Luc Moreau, U. Southampton
Paul Groth, U. Southampton
Victor Tan, U. Southampton

Steve Munroe, U. Southampton
Sheng Jiang, U. Southampton

November 23, 2006

XPath Profile for the Provenance
Query Protocol

Status of this Memo

This document provides information to the community regarding the specification
of a profile for using XPath in querying the provenance of data items from process
documentation and has the status of a working draft. It does not define any
standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright 2006.

Abstract

The provenance query protocol has been defined in a separate document [MMG+06],
and includes the data models for provenance query requests which can be exe-
cuted by a provenance query engine. Many parts of the request document are
unspecified, being dependent on the provenance query engine implementation.
This document defines an XPath-based profile by which provenance queries can
be fully specified against process documentation that is in, or can be mapped to,
XML format.

1

Page 154 of 182

Contents

1 Introduction 3
1.1 Goals and Requirements . 3

1.1.1 Requirements . 3
1.1.2 Non-Requirements . 3

2 Terminology and Notation 3
2.1 XML Namespaces . 3
2.2 Notational Conventions . 4
2.3 XML Schema Diagrams . 4
2.4 XPath notation . 5

3 XPath Query Data Handle 5

4 Single Node XPath Data Accessor 7

5 XPath Relationship Target Filter 8

6 Conclusions 9

2

Page 155 of 182

1 Introduction

The provenance query request data model [MMG+06] has many unspecified parts,
being dependent on the provenance query engine implementation. This document
defines an XPath-based profile by which provenance queries can be fully specified
against process documentation that is in, or can be mapped to, XML format.

This document defines a method by which query data handles can be speci-
fied as XPath expressions evaluated against the p-structure, data accessors can
be specified as XPaths that are usable by the provenance query engine, and re-
lationship target filters can be expressed using XPaths over relationship targets.

1.1 Goals and Requirements

The goal of this document is to define extensions to the provenance query proto-
col to give a complete XPath-based approach to expressing and evaluating such
queries.

1.1.1 Requirements

In meeting this goal, this document must address the following requirements:

• Define the schema of an XPath query data handle.

• Define the schema of an unambiguous (so usable by the provenance query)
XPath-based data accessor.

• Define the schema of an XPath relationship target filter.

1.1.2 Non-Requirements

No relevant non-requirements have been determined for this specification.

2 Terminology and Notation

All definitions for the concepts and structures found within this document can
be found in [TGJ+06].

2.1 XML Namespaces

The xml Namespace uri that must be used by implementations of this specifica-
tion is: http://www.pasoa.org/schemas/version023s1/xquery/XQuery.xsd

Table 1 lists xml namespaces that are used in this specification. The choice
of any namespace prefix is arbitrary and not semantically significant.

3

Page 156 of 182

Prefix XML Namespace Specification(s)
xp http://www.pasoa.org/schemas/version023s1/ [XPath]

pquery/XPathPQuery.xsd

pq http://www.pasoa.org/schemas/version023s1/ [PQuery]
pquery/ProvenanceQuery.xsd

ps http://www.pasoa.org/schemas/version023s1/ [PStruct]
PStruct.xsd

xs http://www.w3.org/2001/XMLSchema [XMLSchema]

Table 1: Prefixes and xml Namespaces used in this specification

2.2 Notational Conventions

The keywords “must ”, “mustnot ”, “required ”, “shall ”, “shallnot ”,
“should ”, “shouldnot ”, “recommended ”, “may ”, and “optional ” in
this document are to be interpreted as described in [Bra97].

2.3 XML Schema Diagrams

This document adopts a graphical notation to describe XML Schema. Figure 1
gives an example of a small xml Schema displayed as a diagram, which is now
explained with reference to the figure.

Figure 1: An example xml Schema diagram

Figure 1 defines the structure of type ts:Test. The type Test contains a
sequence of elements, which we now detail. One element in the sequence is
ts:testName, which can be any type and must occur once and only once in
an instance of ts:Test. ts:Name is followed by element ts:testNumber, which
must contain a string. The ts:testNumber element must occur at least once

4

Page 157 of 182

and can occur as many times as needed. This is denoted by the “1..unbounded”
under the element. Finally, the sequence contains a choice between two elements,
ts:startTest and ts:stopTest, either of which must contain a date.

Below is a simple of description of each of the parts of the xml Schema
diagram format.

An element (instance) is represented by the
qualified name of the element in the box. By
default an element must occur once and only
once. Where this restriction does not hold, the
text “1..unbounded”, “0..unbounded”, “0..N”,
“1..N” (where N is an integer) appears under
the element box. The left hand number is the
minimum occurrences of the element at the po-
sition in the xml document, the right hand
number is the maximum (with “unbounded”
for no maximum).

A complex type is denoted by a lightly marked
box with the qualified name of the type at the
top left. The structure of the type is given
by the elements, types and control structures
within the box.

A horizontal sequence of dots represents a se-
quence of elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

A vertical sequence of dots represents a choice
between elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

2.4 XPath notation

In addition to the XML Schema diagrams, an XPath notation [W3C99] is used
to identify each individual element in the specification along with its context, in
order to describe precisely its meaning and use.

3 XPath Query Data Handle

A query data handle can be expressed as an XPath over the p-structure. On eval-
uating this XPath on a set of process documentation following the p-structure, it

5

Page 158 of 182

will return a set of nodes, which should be interaction or actor state p-assertions
or nodes within interaction or actor state p-assertion contents. If the path evalu-
ates to any other node in the p-structure, e.g. a whole view or interaction record,
then this is an error and a fault should be returned. These are the start data
items for the provenance query algorithm. Note that while a provenance query is
primarily intended to find the provenance of a single item, there is nothing pre-
venting a query data handle from referring to multiple items, and the provenance
of all of these will be determined and returned by the provenance query engine.

Figure 2: Provenance Query Request

An XPath search is a document instantiating the schema shown in Figure 2.

/xp:xpath

Contains an XPath definition.

/xp:xpath/xp:path

Contains the actual XPath string itself.

/xp:xpath/xp:namespaceMapping

Contains a mapping from a prefix used in the XPath string to a namespace.

/xp:xpath/xp:namespaceMapping/xp:prefix

Contains the prefix in a prefix-to-namespace mapping.

/xp:xpath/xp:namespaceMapping/xp:namespace

Contains the namespace in a prefix-to-namespace mapping.

The following is an example of an XPath query data handle. It finds an
element named “ex:data” in the sender view of interactions with a given message
sink.

6

Page 159 of 182

<pq:queryDataHandle>

<pq:search>

<xp:xpath>

<xp:path>/ps:pstruct/ps:interactionRecord[ps:interactionKey/

ps:messageSink[wsa:Address="http://www.example.com/store"]/ps:sender/

ps:interactionPAssertion/ps:content/ex:envelope/ex:store/ex:data</xp:path>

<xp:namespaceMapping>

<xp:prefix>ps</xp:prefix>

<xp:namespace>http://www.pasoa.org/schemas/023s1/PStruct.xsd</xp:namespace>

</xp:namespaceMapping>

<xp:namespaceMapping>

<xp:prefix>wsa</xp:prefix>

<xp:namespace>http://www.ws.addressing</xp:namespace>

</xp:namespaceMapping>

<xp:namespaceMapping>

<xp:prefix>ex</xp:prefix>

<xp:namespace>http://www.example.com</xp:namespace>

</xp:namespaceMapping>

</xp:xpath>

</pq:search>

</pq:queryDataHandle>

4 Single Node XPath Data Accessor

A data accessor for which the operations required by a provenance query engine
can be supported is a single node XPath. This is an XPath, using a subset of
the XPath notation, which explicitly refers to one node in a p-assertion’s content
and has a normalised form which can be directly compared with other single node
XPaths.

A single node XPath part is made up of one of the following concatenated
sequences of text strings:

• A slash (“/”), a namespace prefix followed by a colon, e.g. “ns:”, an element
name, e.g. “element”, an integer index in brackets, e.g. “[1]”.

• A slash (“/”), an at symbol (“@”), a namespace prefix followed by a colon,
e.g. “ns:”, an attribute name, e.g. “attribute”.

• A slash (“/”), the string “text()”, an integer index in brackets, e.g. “[1]”.

Figure 3: Provenance Query Request

7

Page 160 of 182

A single node XPath is made up of a concatenated sequence of single node
XPath parts (where only the first form may be followed by other forms). The
single node XPath is a document instantiating the schema shown in Figure 3.

/xp:singleNodeXPath

Contains an XPath definition where the path is a single node XPath.

In order to enable the required data accessor operations to be performed,
we define a normalised form of a single node XPath. This form is obtained by
replacing each namespace prefix, e.g. “ns:” with the namespace it denotes in
braces, e.g. “{http://www.example.org}”.

The operations required for a provenance query engine to use this data acces-
sor, defined in [MMG+06], are performed as follows.

Get Accessor For Item The data accessor for a node in an p-assertion’s XML
content is obtained by constructing a single node XPath part for each el-
ement from the root of the content down to the node, and concatenating
them.

Test Accessor Equality Two single node XPath data accessors are equal if
their normalised forms are exact matches.

The following is an example of a single node XPath data accessor. It refers
to a particular element named “ex:data” inside a p-assertion’s content.

<ps:dataAccessor>

<xp:singleNodeXPath>

<xp:path>/ex:envelope[0]/ex:store[0]/ex:data[0]</xp:path>

<xp:namespaceMapping>

<xp:prefix>ex</xp:prefix>

<xp:namespace>http://www.example.com</xp:namespace>

</xp:namespaceMapping>

</xp:xpath>

</xp:singleNodeXPath>

</ps:dataAccessor>

5 XPath Relationship Target Filter

A relationship target filter can be expressed as an XPath over documents in-
stantiating the relationship target schema. If the XPath evaluates to 1 or more
nodes, then the result of the filter is true, i.e. the relationship target is in scope.
If the XPath evaluates to 0 nodes, then the result of the filter is false, i.e. the
relationship target is out of scope.

When expressed as an XPath, the relationship target filter follows exactly the
same format as given for the XPath Query Data Handle in Section 3, as shown
in Figure 2.

8

Page 161 of 182

The following is an example of an XPath relationship target filter. It returns
true for a given relationship target only if the parameter name of the relationship
target is not “http://www.example.com#divisor”, i.e. it excludes all divisor data
items from the scope of the provenance query.

<pq:relationshipTargetFilter>

<pq:search>

<xp:xpath>

<xp:path>/pq:relationshipTarget[ps:parameterName!="http://www.example.com#divisor"]</xp:path>

<xp:namespaceMapping>

<xp:prefix>ps</xp:prefix>

<xp:namespace>http://www.pasoa.org/schemas/023s1/PStruct.xsd</xp:namespace>

</xp:namespaceMapping>

<xp:namespaceMapping>

<xp:prefix>pq</xp:prefix>

<xp:namespace>http://www.pasoa.org/schemas/023s1/pquery/ProvenanceQuery.xsd</xp:namespace>

</xp:namespaceMapping>

</xp:xpath>

</pq:search>

</pq:relationshipTargetFilter>

6 Conclusions

This document describes a concrete profile for expressing provenance queries us-
ing the XPath query language. It also defines a supporting data accessor format,
also using XPath.

References

[Bra97] Scott Bradner. Key words for use in RFCs to indicate requirement levels.
http://www.ietf.org/rfc/rfc2119.txt, 1997.

[MMG+06] Simon Miles, Luc Moreau, Paul Groth, Victor Tan, Steve Munroe, and
Sheng Jiang. Provenance Query Protocol. Technical report, University of
Southampton, June 2006.

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, and
Luc Moreau. WS Provenance Glossary. Technical report, Electronics and
Computer Science, University of Southampton, 2006.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation
16 November 1999. http://www.w3.org/TR/xpath, 1999.

9

Page 162 of 182

ws-prov-soap

Authors:
Steve Munroe, U. Southampton

Paul Groth, U. Southampton
Sheng Jiang, U. Southampton
Simon Miles, U. Southampton
Victor Tan, U. Southampton

John Ibbotson, IBM
Luc Moreau, U. Southampton

August 24, 2006

A SOAP Binding for Provenance
P-headers

Status of this Memo

This document provides information to the community regarding the specification
of a data model for process documentation used to describe a SOAP binding of the
process documentation model and has the status of a working draft. It does not
define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright 2006.

Abstract

This document describes a SOAP binding for the process documentation p-
header. It presents a specification of the p-header and can be considered an
extension of the process documentation data model presented in [MGJ+06].

1

Page 163 of 182

Contents

1 Introduction 3
1.1 Goals and Requirements . 3

1.1.1 Requirements . 3

2 Terminology and Notation 4
2.1 XML Namespaces . 4
2.2 Notational Conventions . 4
2.3 XML Schema Diagrams . 4
2.4 XPath notation . 6

3 The P-Header 6
3.1 The P-header’s location in a SOAP Message 7

4 Conclusion 8

2

Page 164 of 182

1 Introduction

In order for p-assertions to be created, asserting actors need to identify which
process they are making an assertion about, which requires some shared context
between asserting actors. As it is application actors that make assertions, a
further obligation is placed on them to pass context information between each
other regarding the process being executed. As this would often be achieved by
putting the context information in the header of an application message, such
as a SOAP message [Mit03], this information is termed the p-header, defined as
follows.

Definition 1 (p-header) The p-header of an interaction is provenance-related
contextual information, sent along with the interaction’s message. 2

In practise, the p-header can contain an identifier for the interaction to which
the context information applies and the locations of provenance stores where p-
assertions documenting the same process are stored. Additionally, the p-header
can contain a set of tracers, which are used to demarcate where one process
starts and ends. A tracer is a token added to a p-header by an application
actor, where the same tracer is added to the p-headers of all interactions in
the same process by the same application actor. Additionally, where a tracer is
included in the p-header of a message received by an application actor, that actor
is obliged to copy the tracer into the p-header of all interactions within the same
process. Using tracers, a querying actor can determine which interactions were
part of a single process, because their p-headers will all contain the same tracer,
and whether one process is contained within another, because the tracers of the
former’s interactions will be a subset of the tracers of the latter’s interactions.
This document presents a specification of the data model for the p-header.

A full overview document is available that describes the vision for the stan-
dardisation effort [TMG+06].

1.1 Goals and Requirements

The goal of this document is to define an open, interoperable model for the p-
header and its location in a SOAP header.

1.1.1 Requirements

In meeting this goal, this document must address the following requirements:

• Define the data items necessary for the p-header and their logical organi-
sation.

• Locate the p-header within a SOAP header.

3

Page 165 of 182

• Provide the basis for an open, interoperable set of standards.

• Provide extensibility for more sophisticated and/or currently unanticipated
scenarios.

2 Terminology and Notation

All definitions for the concepts and structures found within this document can
be found in [TGJ+06].

2.1 XML Namespaces

The xml Namespace uri that must be used by implementations of this specifi-
cation is: http://www.pasoa.org/schemas/version023s1/PStruct.xsd

Table 1 lists xml namespaces that are used in this specification. The choice
of any namespace prefix is arbitrary and not semantically significant.

Prefix XML Namespace Specification(s)
ph http://www.pasoa.org/schemas/version023s1/PHeader.xsd [P-Header]
xs http://www.w3.org/2001/XMLSchema [XMLSchema]

Table 1: Prefixes and xml Namespaces used in this specification

2.2 Notational Conventions

The keywords “must ”, “mustnot ”, “required ”, “shall ”, “shallnot ”,
“should ”, “shouldnot ”, “recommended ”, “may ”, and “optional ” in
this document are to be interpreted as described in [Bra97].

2.3 XML Schema Diagrams

This documents adopts a graphical notation to describe XML Schema. Figure 1
gives an example of a small xml Schema displayed as a diagram, which is now
explained with reference to the figure.

Figure 1 defines the structure of type ts:Test. The type Test contains a
sequence of elements, which we now detail. One element in the sequence is
ts:testName, which can be any type and must occur once and only once in
an instance of ts:Test. ts:Name is followed by element ts:testNumber, which
must contain a string. The ts:testNumber element must occur at least once
and can occur as many times as needed. This is denoted by the “1..unbounded”
under the element. Finally, the sequence contains a choice between two elements,
ts:startTest and ts:stopTest, either of which must contain a date.

4

Page 166 of 182

Figure 1: An example xml Schema diagram

Below is a simple of description of each of the parts of the xml Schema
diagram format.

An element (instance) is represented by the
qualified name of the element in the box. By
default an element must occur once and only
once. Where this restriction does not hold, the
text “1..unbounded”, “0..unbounded”, “0..N”,
“1..N” (where N is an integer) appears under
the element box. The left hand number is the
minimum occurrences of the element at the po-
sition in the xml document, the right hand
number is the maximum (with “unbounded”
for no maximum).

A complex type is denoted by a lightly marked
box with the qualified name of the type at the
top left. The structure of the type is given
by the elements, types and control structures
within the box.

A horizontal sequence of dots represents a se-
quence of elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

A vertical sequence of dots represents a choice
between elements or control structures, that
must appear in an element conforming to the
type in the surrounding type box.

5

Page 167 of 182

2.4 XPath notation

In addition to the XML Schema diagrams, an XPath notation [W3C99] is used
to identify each individual element in the specification along with its context, in
order to describe precisely its meaning and use.

3 The P-Header

The p-header’s intended functionality is to provide a way for actors to pass meta-
information about interactions. Though the model is technology neutral, we focus
on the use of SOAP messages as the vehicle to pass around application messages
and thus forms the basis of the interaction model in this document.

The p-header is constructed and placed within the header of a SOAP message.
The information contained within a p-header is of three types. First, the p-
header contains an interaction key. This key is used to link p-assertions made at
different times and by different actors to a specific interaction. Any p-assertion
made about a specific interaction should use the same interaction key. This
enables queriers to later come along and find all those p-assertions about a given
interaction by examining their interaction keys and selecting all those that have
the same one. Thus, when an actor sends a message to another actor it must
include an interaction key so that the receiver can use this within its own p-
assertions about the interaction to point to that interaction. Along with the
interaction key, a p-header contains an optional set of interaction metadata (see
[MGJ+06] for the detailed specification of the elements defined within the p-
header, i.e. InteractionKey, InteractionMetada and InteractionContext).
This data contains provenance related information about the interaction such as
pointers to the location where p-assertions made by the actor are stored, any
tracers that are being used to denote a process and any other application specific
information deemed necessary. The information described so far all refer to the
current interaction, i.e. the contents of the SOAP message to which the p-header
is attached.

The final form of information contained within a p-header is an optional set
of interaction contexts relating to other interactions, i.e. interactions other than
the one that the above discussed interaction key and interaction metadata are
about. This provides the means to propagate view and object links around.
This information includes the interaction key of the interaction being referred to,
and other information relating to where p-assertions relating to this information
are stored, i.e. interaction metadata about the interaction. The model of the
p-header is shown in Figure 2.

The contents of a p-header are further described as follows:

/ph:pheader

6

Page 168 of 182

Figure 2: Model of the PHeader.

The root element of the p-header. It contains a sequence of three compo-
nents that enable actors to add interaction context elements to messages:
an interaction key, an optional set of interaction metadata about the
identified interaction, and an optional set of interaction contexts about
other interactions.

/ph:pheader/ps:interactionKey

The intent of this component is to uniquely identify the interaction whose
message this p-header is attached. The full definition of interactionKey

is given in [MGJ+06].

/ph:pheader/ps:interactionMetaData

The intent of this component is to hold meta data about the above identified
interaction. The full description nd formal definition of interactionMetaData
is given in [MGJ+06].

/ph:pheader/ps:interactionContext

The intent of this component is to provide information about the context
of the above identified interaction by identifying those other interactions
that are relevant to this one. The full description and formal definition of
interactionContext is given in [MGJ+06].

3.1 The P-header’s location in a SOAP Message

Given the full specification of the p-header as above, its location within a SOAP
message can be described. Figure 3 shows a SOAP message and its component
parts. A SOAP message contains an envelope that, as its name would suggest,
serves as a container for the other elements of the SOAP message. Those other

7

Page 169 of 182

Figure 3: The p-header’s location in a SOAP message

elements comprise the message body that contains the application specific infor-
mation that is to be passed, as well as the SOAP header.

The SOAP header is used to supply extra information about the message that
does not properly belong in the message body. For example, the information in
the message body may need to be linked to other messages — it is the purpose
of the SOAP header to carry such information. Since the p-header is designed to
carry context specific information about p-assertions, that is, extra information
about the enclosed p-assertions, then its natural place within a SOAP message is
in the SOAP header. This is shown the figure, where the location of the p-header
is shown as being within one of the SOAP header entries.

The XML snippet below shows a soap message with a p-header and its el-
ements enclosed within the SOAP message’s Header element. The namespaces
shown under the Envelope element provide the prefixes for each of the parts of
the p-header and the application data contained within the Body element.

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

soap:encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/">

xmlns:ph="http://www.pasoa.org/schemas/version023s1/PHeader.xsd">

xmlns:ps="http://www.pasoa.org/schemas/version023s1/PStructure.xsd">

xmlns:ap="http://www.application/data/Data.xsd">

<soap:Header>

<ph:pheader>

<ps:interactionKey>...</ps:interactionKey>

<ps:interactionMetaData>...</ps:interactionMetaData>

<ps:interactonContext>...</ps:interactionContext>

</ph:pheader>

</soap:Header>

<soap:Body>

<ap:applicationData>010011100111</ap:applicationData>

</soap:Body>

</soap:Envelope>

8

Page 170 of 182

4 Conclusion

In this document the specification of the process documentation p-header was
presented. The p-header is used to transfer provenance-based context information
within the headers of application specific messaging protocols such as SOAP.
This enables actors to relate messages to other messages and thus helps to bring
together different views on a given interaction.

Appendix A

The following illustrates the p-header types and elements used in this document.

<?xml version="1.0" encoding="UTF-8"?> <xs:schema

targetNamespace="http://www.pasoa.org/schemas/version023s1/PHeader.xsd"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ph="http://www.pasoa.org/schemas/version023s1/PHeader.xsd"

xmlns:ps="http://www.pasoa.org/schemas/version023s1/PStruct.xsd">

<xs:annotation>

<xs:documentation>

The PHeader schema

Author: Paul Groth

Copyright (c) 2006 University of Southampton

See pasoalicense.txt for license information.

http://www.opensource.org/licenses/mit-license.php

</xs:documentation>

</xs:annotation>

<xs:import namespace="http://www.pasoa.org/schemas/version023s1/PStruct.xsd"

schemaLocation="./PStruct.xsd"/>

<xs:element name="pheader" type="ph:PHeader"/>

<xs:complexType name="PHeader">

<xs:annotation>

<xs:documentation>Provenance Specific Header Information</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element ref="ps:interactionKey" maxOccurs="1" minOccurs="1" />

<xs:element ref="ps:interactionMetaData" maxOccurs="unbounded" minOccurs="0"/>

<xs:element ref="ps:interactionContext" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

9

Page 171 of 182

References

[Bra97] Scott Bradner. Key words for use in RFCs to indicate requirement levels.
http://www.ietf.org/rfc/rfc2119.txt, 1997.

[MGJ+06] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan, and
Luc Moreau. Data model for Process Documentation. Technical report,
University of Southampton, June 2006.

[Mit03] N. Mitra. Soap version 1.2 part 0: Primer. http://www.w3.org/TR/soap12-
part0/, 2003.

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, and
Luc Moreau. WS Provenance Glossary. Technical report, Electronics and
Computer Science, University of Southampton, 2006.

[TMG+06] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and
Luc Moreau. The Provenance Standardisation Vision. Technical report,
University of Southampton, June 2006.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation 16
November 1999. http://www.w3.org/TR/xpath, 1999.

10

Page 172 of 182

ws-prov-gloss

Authors:
Victor Tan, U. Southampton

Paul Groth, U. Southampton,
Sheng Jiang, U. Southampton
Simon Miles, U. Southampton

Steve Munroe, U. Southampton
Luc Moreau, U. Southampton

October 23, 2006

WS Provenance Glossary

Status of this Memo

This document provides a glossary of terms intended to be used as a reference to
other specification documents pertaining to the data model for process documen-
tation [MGJ+06]. It does not define any standards or technical recommendations.
Distribution is unlimited.

Copyright Notice

Copyright 2006.

Abstract

This glossary defines a set of terms used in the draft Provenance standard specifi-
cation documents ([MGJ+06], [TMG+06b], [MTG+06], [TMG+06a], [GTM+06],
[MMG+06b], [MMG+06a]) for the process documentation data model. The terms
described here are intended to be implementation and technology independent,
with the intent that they can be analyzed and applied to as many contexts as
possible.

1

Page 173 of 182

Contents

1 Introduction 3
1.1 Goals and Requirements . 3

1.1.1 Requirements . 3
1.1.2 Non-Requirements . 3

2 Provenance Glossary 3

2

Page 174 of 182

1 Introduction

The provenance of data and information generated within a computer system
is the set of documentation that describes the processes that resulted in their
creation. These processes can be viewed as sequences of causally related events
that commence at some specific point in the past and eventually lead up to the
event of creating the data or information of interest. The documentation of this
sequence of events is based on a representational model that describes the stor-
age, retrieval and processing of the documentation in a generic and technology
independent manner. The data model for process documentation [MGJ+06] pro-
vides a detailed description of this model. This glossary assembles and defines
a set of terms used in the model description. It also acts as a repository of all
defined terms for the provenance standardisation documents related to the data
model document.

1.1 Goals and Requirements

The goal of this document is to provide a set of defined terms used in all prove-
nance standardization documents related to the data model for process documen-
tation [MGJ+06].

1.1.1 Requirements

In meeting this goal, this document must address the following requirement:

• It must provide definitions for all terms used in all provenance standard-
ization documents.

1.1.2 Non-Requirements

This document does not intend to meet the following requirement:

• Provide further clarification and context for the definitions provided. Such
material will be provided in the documents from which these terms are
collated from.

2 Provenance Glossary

Glossary

Actor

An actor is an entity with a distinct identity capable of undertaking some
autonomous action within a provenance system. See also Asserting Actor
and Querying Actor.

3

Page 175 of 182

Actor State P-Assertion

An actor state p-assertion is an assertion, by an actor, of data received
from an (unspecified) internal component of the actor just before, during
or just after a message is sent or received. It can, therefore, be viewed as
documenting part of the state of the actor at an instant, and may be the
cause, but not effect, of other events in a process.

Anonymous Documentation Style

The anonymous documentation style denotes a transformation of a message
by which a part of (or the whole of) its contents has been replaced by an
anonymous identifier. This identifier hides the actual data without losing
the link to them.

Asserter Identity

An asserter identity is an identifier for an actor that asserts p-assertions.

Asserting Actor

An asserting actor is an actor that creates or asserts a p-assertion, which
may subsequently be recorded to a provenance store.

Assertion Category Policy

An assertion category policy specifies what categories of p-assertions a ser-
vice can record.

Composite Documentation Style

A composite documentation style indicates that more than one atomic doc-
umentation style has been applied to a message.

Data Accessor

A data accessor is a reference to the location of a p-assertion data item
within a p-assertion’s content.

Data Staging Policy

A data staging policy specifies whether or not a provenance store is capable
of data staging. If so, it identifies which other provenance stores it can send
its contents, its data staging capabilities for different classes of recording
actors, and whether it is capable of both recording p-assertions into other
provenance stores (push-based data staging) or querying other provenance
stores (pull-based data staging), or both.

Data Upload Policy

A data upload policy specifies if and how frequently a provenance store has
to resolve a reference contained in a p-assertion.

4

Page 176 of 182

Document Language Mapping

A document language mapping is a definition of how to transform doc-
uments formatted in one document language into another document lan-
guage.

Documentation Style

Documentation style is a representation of the transformation according to
which the content of a message is asserted in an interaction p-assertion or
the state of an actor is asserted in an actor-state p-assertion.

Documentation Style Policy

A documentation style policy describes the various different kinds of docu-
mentation style a recording service offers.

Global P-Assertion Key

A global p-assertion key is used to uniquely identify a p-assertion through-
out the provenance system, and consists of an interaction key, a view kind
and the local p-assertion identifier for that p-assertion.

Index Management Policy

The index management policy states whether a provenance store is capable
of performing indexing and, if it can, the different kinds of indexing offered
by the store must be enumerated.

Interaction Context

A set of interaction metadata about an identified interaction.

Interaction Identifier

A value that is unique for a given interaction message sent from one message
source to one message sink.

Interaction Key

A globally unique identifier for an interaction.

Interaction Metadata

Provenance-related data about an interaction.

Interaction P-Assertion

An interaction p-assertion is an assertion of the contents of an interaction
message by an actor that has sent or received that message; the message
must include information that allows it to be identified uniquely.

5

Page 177 of 182

Interaction Record

An interaction record encapsulates all the p-assertions and identifiers re-
lated to one interaction, and is uniquely identified by an interaction key.

Internal Reference Documentation Style

The internal reference documentation style specifies a transformation of a
message by which a part of (or the whole of) its contents has been replaced
by a global p-assertion key, which refers to another p-assertion that contains
the actual data.

Link

A link is a reference to another provenance store.

Local P-Assertion Identifier

A value that is unique for each p-assertion made by one asserting actor
about one interaction.

Message Sink

The address to which an interaction message was sent.

Message Source

The address from which an interaction message was sent.

Object Identifier

An object identifier uniquely identifies the objects of an asserted relation-
ship p-assertion.

P-Assertion

A p-assertion is an assertion that is made by an actor and pertains to a
process. See also Actor State P-Assertions, Relationship P-Assertion and
Interaction P-Assertion.

P-Assertion Category

A p-assertion category is classification of a p-assertion on the basis of the
type of information it can record.

P-Assertion Data Item

Part, or all, of a p-assertion.

P-Assertion Data Key

A globally unique identifier for a p-assertion data item.

6

Page 178 of 182

P-Header

The p-header of an interaction is provenance-related contextual informa-
tion, sent along with the interaction message.

P-Structure

The p-structure is a common logical structure of the provenance store
shared by all actors including asserting, recording, querying and manag-
ing actors.

P-Structure Reference

A p-structure reference is a declaration of the p-structure over which a
provenance query’s entity search will be executed.

Parameter Name

A parameter name identifies an entity’s role in a relationship, where that
entity is documented by a p-assertion data item.

Process Documentation

The documentation of a process consists of a set of p-assertions made by
the actors involved in the process.

Provenace Store Template Policy

A provenance store template policy indicates the ability of the store to
accept templates from asserting actors, the languages for producing p-
assertions the store supports, and the recording actors it can accept tem-
plates from.

Provenance of a piece of data

The provenance of a piece of data is the process that led to that piece of
data.

Provenance Query Result Full Relationships

A provenance query result full relationship is the relationship between two
p-assertion data items in the provenance of an entity found by a query.

Provenance Query Result Start

A provenance query result start is the p-assertion data key(s) to the process
documentation of the entity for which the provenance was found, i.e. the
key(s) for the p-assertion data item(s) found by resolving the query data
handle.

7

Page 179 of 182

Provenance Store

A provenance store is a repository dedicated for purpose of storing p-
assertions created by asserting actors, and subsequently retrievable by query-
ing actors.

Query Data Handle

A query data handle is a search over the contents of a provenance store in
order to find the record of an entity at a given instant that the querying
actor wishes to find the provenance of.

Query Store Policy

A query store policy states which provenance stores a querying service has
access to.

Querying Actor

A querying actor is an actor that retrieves p-assertions from a provenance
store for purposes of answering process documentation related queries.

Recipient Store Policy

A recipient store policy specifies which provenance stores a service can
record to.

Reference Documentation Style

The reference documentation style denotes a transformation of a message
by which a part of (or the whole of) its contents has been replaced by a
reference to the location where the actual contents can be found.

Reference-Digest Documentation Style

The reference-digest documentation style specifies a transformation of a
message by which a part of (or the whole of) its contents has been replaced
by a reference to the actual location where it can be found and a digest of
the substituted data.

Relationship P-Assertion

A relationship p-assertion is an assertion by an actor that the sending of
a message would not be occurring or a data item it is sending would not
be as it is (the effect), if it had not received other messages or data items
had not been as they are (the causes), and that this relationship is due to
its own action, expressible as the function applied to the causes to produce
the effect.

8

Page 180 of 182

Relationship Target

A relationship target is the full set of information about a p-assertion data
item that is the subject or object of a relationship passertion.

Relationship Target Filter

A relationship target filter is a mechanism by which a querying actor can
scope the provenance query results.

Search Language Policy

A search language policy identifies the search languages the provenance
store supports.

Security Signature Checking Policy

A security signature checking policy specifies whether or not a provenance
store has the capability to examine and validate the signatures placed in a
p-assertion by an asserting actor, as well stating what action is to be taken
if a conflict is detected.

Security-encryption Documentation Style

The security-encryption documentation style specifies a transformation of a
message by which a part of (or the whole of) its contents has been encrypted.

Security-signing Documentation Style

The security-signing documentation style specifies the transformation of a
message by which a part of (or the whole of) its contents has been signed.

Subject Identifier

A subject identifier uniquely identifies a data item or message acting as the
subject of an asserted relationship p-assertion.

Tracer

A tracer is a piece of information used to associate an interaction with
other, related interactions on the basis of some shared information.

Verbatim Documentation Style

The verbatim documentation style denotes a null transformation applied to
the contents of a message.

View

A view is the set of p-assertions asserted by an actor about a specific inter-
action.

9

Page 181 of 182

View Kind

Denotes, for a p-assertion, whether the actor making that p-assertion was
the sender or the receiver in the interaction to which the p-assertion refers.

References

[GTM+06] Paul Groth, Victor Tan, Steve Munroe, Sheng Jiang, Simon Miles,
and Luc Moreau. Process Documentation Recording Protocol. Tech-
nical report, University of Southampton, June 2006.

[MGJ+06] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan,
and Luc Moreau. Data model for Process Documentation. Technical
report, University of Southampton, June 2006.

[MMG+06a] Simon Miles, Luc Moreau, Paul Groth, Victor Tan, Steve Munroe,
and Sheng Jiang. XPath Profile for the Provenance Query Protocol.
Technical report, University of Southampton, June 2006.

[MMG+06b] Simon Miles, Steve Munroe, Paul Groth, Sheng Jiang, Victor Tan,
John Ibbotson, and Luc Moreau. Process Documentation Query
Protocol. Technical report, University of Southampton, June 2006.

[MTG+06] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. WSRF Data Model Profile for Distributed Prove-
nance. Technical report, University of Southampton, June 2006.

[TMG+06a] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. A Profile for Non-Repudiable Process Documen-
tation. Technical report, University of Southampton, June 2006.

[TMG+06b] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. Basic Transformation Profile for Documentation
Style. Technical report, University of Southampton, June 2006.

10

Page 182 of 182

	Open Specification Documents

