
VisTrails: Process
Provenance for SciVis

GGF18 Provenance Challenge Entry

Scientific Computing and Imaging Institute, School of
Computing - University of Utah

Erik Anderson, Steve Callahan, Juliana Freire, Emanuele
Santos, Cláudio Silva, Carlos Scheidegger, Huy Vo

Figure 1: VisTrails Architecture.

tom visualization scripts over data produced by simulations. Since

there is no infrastructure to manage these scripts (and associated

data), often, finding and running them are tasks that can only be

performed by their creators. This is one of main reasons Baptista is

not able to easily produce the visualizations he needs in the course

of his explorations. Even for their creators, it is hard to keep track

of the correct versioning of scripts and data. Since these visualiza-

tion products are generated in an ad-hoc manner, data provenance

is not captured in a persistent way. Usually, the figure caption and

legends are all the metadata available for this composite visualiza-

tion in the PowerPoint slide.

VisTrails addresses these problems by providing infrastructure

to support the interaction of the scientist with the visualization

process. Our objective is to give scientists a dramatically improved

and simplified process to analyze and visualize large ensembles of

simulations and observed phenomena.

3. EXISTING VISUALIZATION SYSTEMS
Visualization systems such as VTK [6] and SCIRun [7] allow

the interactive creation and efficient manipulation of complex vi-

sualizations. These systems are based on the notion of dataflows,

where a visualization is produced by assembling visualization pipe-

lines out of modules that are connected in a network. However,

these systems lack basic data management capabilities and as a

result, they have important limitations.

An important limitation of existing visualization tools is that

they lack provenance. Manually created captions and filenames

are often the only provenance information available. In addition,

existing tools lack history management. First and foremost, there

is no separation between the dataflow specification and its para-

meters. As the parameters are modified, the previous values are

forgotten. This places the burden on the scientist to first construct

the visualization and then to remember what values led to a par-

ticular image. Also, as the dataflow evolves (i.e., operations are

added, deleted or modified) no information is kept about previous

versions. Another limitation of existing tools is that they lack the

ability for comparative visualization. In particular, they lack the

necessary infrastructure for properly supporting exploratory multi-

view visualizations. The process required to create and compare a

large number of visualizations is way too cumbersome. For exam-

ple, executing the same dataflow with different parameters (e.g.,

different input data sets) requires users to manually specify all the

parameters using a Graphical User Interface (GUI). Clearly, this

mechanism is not scalable for generating more than a few visual-

izations. Finally, existing systems lack an optimization infrastruc-

ture. In particular, these systems may perform unnecessary and

redundant computations while executing dataflows.

4. THE VISTRAILS SYSTEM
The high-level architecture of VisTrails is shown in Figure 1. We

only sketch the main features of the system here, for further details

Figure 2: A snapshot of the VisTrails history management interface.

Each node in the history is a separate dataflow that differs from its

parent by changes to the parameters or modules.

see [2, 3]. Users create and edit dataflows using the Vistrail Builder

user interface. The vistrail specifications are saved in the Vistrail

Repository. Users may also interact with saved vistrails by invok-

ing them through the Vistrail Server (e.g., through a Web-based

interface) or by importing them into the Visualization Spreadsheet.

Each cell in the spreadsheet represents a view that corresponds to

a vistrail instance; users can modify the parameters of a vistrail as

well as synchronize parameters across different cells. Vistrail ex-

ecution is controlled by the Vistrail Cache Manager, which keeps

track of operations that are invoked and their respective parame-

ters. Only new combinations of operations and parameters are re-

quested from the Vistrail Player, which executes the operations

by invoking the appropriate functions from the Visualization and

Script APIs. The Player also interacts with the Optimizer module,

which analyzes and optimizes the dataflow specifications. A log

of the vistrail execution is kept in the Vistrail Log. The different

components of the system are described in detail below.

Vistrail Specification. A dataflow is a sequence of operations used

to generate a visualization. A vistrail captures the notion of an

evolving dataflow – it consists of several versions of a dataflow.

The information in a vistrail serves both as a log of the steps fol-

lowed to generate a visualization, a record the visualization prove-

nance, and as a recipe to automatically re-generate the visualiza-

tion at a later time. The steps can be replayed exactly as they were

first executed, and they can also be used as templates – they can be

parameterized. In order to handle the variability in the structure

of operations, and to easily support the addition of new operations,

we represent vistrails using XML (for more detail, see [3]). An

important benefit of using an open, self-describing, specification

is the ability to query, share, and publish vistrails. This allows a

scientist to publish an image along with its associated vistrail so

that others can easily reproduce the results.

History Management. To provide full provenance of a visualiza-

tion product, we have implemented a history management mecha-

nism that allows a scientist to return to previous steps in the dataflow.

Thus a vistrail contains not only one dataflow, but a collection

of dataflows (see Figure 2). Our history management behaves as

a versioning system and it is based on tracking the evolution of

dataflows. It is reminiscent of DARCS2: instead of storing the

dataflows themselves, we store the operations (called actions in

VisTrails) that take one dataflow to another. At any point in time,

the scientist can choose to view the entire history of changes, or

only the dataflows important enough to be given a name (i.e., an-

notated changes).

Caching, Analysis and Optimization. Having a high-level spec-

ification allows the system to analyze and optimize dataflows. Ex-

ecuting a vistrail can take a long time, especially if large data sets

2http://abridgegame.org/darcs

Process Provenance

Fig. 5. Visual diff interface. This figure shows the differences between the nodes labeled
color and opacity and good transferfunc.

occurrences of R1 with R2 modules. Fig. 4 shows the VisTrails bulk-change in-
terface. For the workflow corresponding to the node labeled baseImage1 in the
tree of Fig. 2, the user instructs the system to create visualizations varying the
voxel size from 1.25 to 3.5 in four steps. VisTrails executes the workflow us-
ing the interpolated values and automatically displays the four images in the
spreadsheet, where the specialist can easily select the most accurate one. Since
some scanners use different resolution in different axis, correcting non-uniform
resolution is a common task while dealing with CT scans. To perform this task
using SCIRun [9], the visualization expert must go through the lengthy process
of manually setting these parameters, one by one through a GUI and saving the
resulting images into files.
Re-Use of Stored Provenance. To construct complex scientific workflows,
users must have deep knowledge of underlying tools and libraries. Even for ex-
perts, creating these workflows can be time-consuming. Thus, mechanisms that
allow the re-use of workflows or workflow fragments are key to streamlining the
exploratory process. In VisTrails, users can create macros by selecting a sequence
of actions in the version tree, or by selecting a workflow fragment. Internally, a
macro m is represented as a sequence of operations xj ◦xj−1 ◦ . . . ◦xk. To apply
m to a workflow f in the version tree, VisTrails simply composes m with the
actions of f .
Interacting with Provenance Information. At any point in time, the sci-
entist can choose to view the entire history of changes, or only the workflows
important enough to be given a name, i.e., the tagged nodes in the version tree.
The version tree in Fig. 2 represents the history of the changes applied to a
workflow to generate the visualizations shown in Fig. 1. Note that in this figure,
only tagged nodes are displayed. Edges that hide untagged nodes are marked

Process Evolution

Version Tree, Workflows

Figure 3. A snapshot of the VisTrails history management interface. Each node in the vistrail history tree represents a dataflow
version. An edge between a parent and child nodes represents to a set of (change) actions applied to the parent to obtain the dataflow

for the child node. The image and dataflow instance corresponding to the node labeled “Time Step 90” are shown on the right.

pertinent to the execution of a particular dataflow instance is

kept in the Vistrail Log (see Figure 1). There are many ben-

efits from keeping this information, including: the ability to

debug the application—e.g., it is possible to check the re-

sults of a dataflow using simulation data against sensor data;

reduced cost of failures—if a visualization process fails, it

can be restarted from the failure point. The latter is espe-

cially useful for long running processes, as it may be very

expensive and time-consuming to execute the whole process

from scratch. Logging all the information associated with

all dataflows may not be feasible. VisTrails provides an in-

terface that lets users select which and how much informa-

tion should be saved.

Creating and Interacting with Vistrails The Vistrail

Builder (VB) provides a graphical user interface for creating

and editing dataflows (Figure 2(a)). It writes (and also reads)

dataflows in the same XML format as the other components

of the system. It shares the familiar nodes-and-connections

paradigm with dataflow systems. To allow users to compare

the results of multiple dataflows, we built a Visualization

Spreadsheet (VS). The VS provides the user a set of separate

visualization windows arranged in a tabular view. This lay-

out makes efficient use of screen space, and the row/column

groupings can conceptually help the user explore the visu-

alization parameter space. The cells may execute different

dataflows and they may also use different parameters for the

same dataflow specification (see Figure 2(b)). To ensure ef-

ficient execution, all cells share the same cache. Users can

also synchronize different cells using the VS interface.

4 Capturing Dataflow Evolution

Vistrail: An Evolving Dataflow To provide full provenance

of the visualization exploration process, we introduce the

notion of a visualization trail—a vistrail. A vistrail captures

the evolution of a dataflow—all the trial-and-error steps fol-

lowed to construct a set of visualizations. A vistrail consists

of a collections of dataflows—several versions of a dataflow

and its instances. A vistrail allows scientists to explore visu-

alizations by returning to and modifying previous versions

of a dataflow.

An actual vistrail is depicted in Figure 3. Instead of stor-

ing a set of related dataflows, we store the operations or ac-

tions that are applied to the dataflows. A vistrail is essen-

tially a tree in which each node corresponds to a version of

a dataflow, and each edge between nodes P and C, where P is

the parent of C, corresponds to one or more actions applied

to P to obtain C. This is similar to the versioning mechanism

used in DARCS5. More formally, let DF be the domain of

all possible dataflow instances, where /0 ∈ DF is a special
empty dataflow. Also, let x : DF → DF be a function that

transforms a dataflow instance into another, and D be the

set of all such functions. A vistrail node corresponds to a

dataflow constructed by a sequence of actions:

vt = xn ◦ xn−1 ◦ . . .◦ x1 ◦ /0

where each xi ∈D .
An excerpt of the XML schema for a vistrail is shown

in Figure 4.6 A visTrail has a unique id, a name, an

optional annotation, and a set of actions. Each action is

uniquely identified by a timestamp (@time), which corre-

sponds to the time the action was executed. Since actions

form a tree, an action also stores the timestamp of its parent

(@parent). The different actions we have implemented in

our current prototype are described below. To simplify the

retrieval of particularly interesting versions, a vistrail node

can optionally have a name (the optional attribute tag in

the schema).

Dataflow Change Operators. In the current VisTrails pro-

totype, we implemented a set of operators that correspond

to common actions applied in the exploratory process, in-

cluding: adding or replacing a module, deleting a module,

adding a connection between modules, and setting parame-

ter values. We also have an import operator that adds a

dataflow to an empty vistrail—this is useful for starting a

new exploration process.

5http://abridgegame.org/darcs
6Due to space constraints, we only show subset of the schema and use

a notation that is less verbose than XML Schema.

The VisTrails Plugin
architecture

Each module is just
Python source

class AlignWarp(ProvenanceChallenge):

 def compute(self):
 image = self.getInputFromPort("image")
 ref = self.getInputFromPort("reference")
 model = self.getInputFromPort("model")
 o = self.interpreter.filePool.createFile(suffix='.warp')
 cmd = self.air_cmd_line('align_warp',
 image.name, ref.name, o.name,
 '-m', model, '-q')
 self.run(cmd)
 self.setResult("output", o)

Dataflow
API

The VisTrails Plugin
architecture

Each module is just
Python source

class AIRHeaderFile(modules.basic_modules.File):

 def get_header_annotations(self):

 def compute(self):
 modules.basic_modules.File.compute(self)
 d = self.get_header_annotations()
 self.annotate(d)

Annotation
API

The VisTrails Plugin
architecture

Each module is just
Python source

addModule(AlignWarp)
addInputPort(AlignWarp, "image", ...)
addInputPort(AlignWarp, "image_header", ...)
addInputPort(AlignWarp, "reference", ...)
addInputPort(AlignWarp, "reference_header", ...)
addInputPort(AlignWarp, "model", ...)
addOutputPort(AlignWarp, "output", ...)

Registering
a module

within VisTrails

DB for runtime info

Provenance Trace

• Version tree induces a relation (version,
modules)

• We extended the provenance with new
relations that capture executions of the
workflows and modules

• How do we query these?

Provenance Trace
wf: upstream(x) union x where
 x.name = FileSink and
 x.parameter('name') = 'atlas-x.gif'
 and executed(x)

Query language provides a unified
relational view for provenance data

Provenance Trace
wf: upstream(x) union x
where x.module = AlignWarp
and y in inputs(x)
and y.annotation('center') =
 'UChicago'

Query language provides a unified
relational view for provenance data

The data logging
problem

• Users really want not only execution
statisticts, but also the (intermediate) results

• Sufficiently general modules require (at
least) kernel-level control of file creation

• Undecidable otherwise!

• Our solution: provide an API modules can
use at runtime to store metadata for further
querying

Acknowledgments

• Workshop organizers

• VisTrails team

• NSF (IIS-0513692, CCF-0401498,
EIA-0323604, CNS-0514485, IIS-053468,
CNS-0528201, OISE-0405402), DOE, IBM,
CAPES/Fulbright

