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Abstract. Problem-solving methods are means to describe the inference process
of knowledge-based systems. During the last years, a number of these problem-
solving methods have been identified that can be reused for building new
systems. However, problem-solving methods require specific types of domain
knowledge and introduce specific restrictions on the tasks that can be solved by
them. These requirements and restrictionsaaseimptionshat play a key role in
reusing problem-solving methods, in acquiring domain knowledge, and in
defining the problem that can be tackled by the knowledge-based systems. In the
paper, we discuss the different roles, assumptions play in the development
process of knowledge-based systems and provide a survey of assumptions used
by diagnostic problem solving. We show how such assumptions introduce target
and bias for goal-driven machine learning and knowledge discovery techniques.

1 INTRODUCTION

During the last years, Problem-solving methods (PSMs) have become quite successful in
describing the reasoning behavior of knowledge-based sys{@nanf@irasekaran, 1986]
[Marcus, 1988][Puppe, 1993][Schreiber et al., 1993[Schreiber et al., 1994|Eriksson et

al., 1995] [Steels, 199Q][Terpstra et al., 1993JAngele et al., 1996] On the one hand,
PSMs refine generic inference strategies and search methods to task and domain-specifi
circumstances. On the other hand, they are not designed for one specific application problem
Instead, they are usable for a family of similar problems: Similar in terms of the goals that
should be achieved and similar in the type of knowledge that is required as resource for the
reasoning process. Libraries of PSMs are describfgkemamins, 1995][Breuker & Van de

Velde, 1994][Chandrasekaran et al., 199@lotta & Zdrahal, 1996]and[Puppe, 1993]

One of the first problem-solving methods for knowledge-based systems (KB&s)ristic
classification(seeFigure ). [Clancey, 1985]dentified it as a generic reasoning pattern of
several expert systems applied to different probléineensists of three main inference steps:

» adata abstaction step that abstracts concret@ues lile “body-temperature = 39.2
degree Celsius” to thealue “high ferer”;



» a heuristic math stepthat uses these abstract descriptions to heuristically establish
some possible solution classes.

» arefinementtep that shouldrid a fnal solution by discrimination.

Each of the inference step requires specific knowledge types as resource. A data abstractio
stepcan only be performed if hierarchical knowledge over data is available, and a refinement
step of solutions can only be done if hierarchical knowledge over solution classes is available.

Describing PSMs by their inference steps, knowledge types, and inference structures tha
determine the data and knowledge flow between the inferences, has become a common styl
in knowledge engineering. Examples for diagnosis are providfBdoyamins, 1995and for
planning by[Barros et al., 1997Basically, these descriptions decompose the entire inference
process into more elementary sub steps.

[Van de Velde, 1988Jand [Akkermans et al., 1993proposed the description of the
competencef a PSM in extension to their decompositional descriptions. Such competence
descriptions define the goals that can be achieved by a PSM independehbiwdhese

goals are achieved. Thus, such competence descriptions resemble the idea of functione
specifications from software engineering for PSMs. A functional specification of a software
artefact describeshatthe software system does without referring to the way how it achieves
its functionality[Fensel, 1995c]Examples of such competence descriptions can be found in
[Fensel & Groenboom, 1997|Fensel & Schonegge, 1997kdnd [Fensel & Schonegge,
submitted]

However, establishing the competence of a PSM requires the definition of a control flow that
defines the execution order of the inference steps of a [F8htel et al., to appeaahd a

notion of the functionality that is provided by the domain knowledge. The competence
definition of a PSM like heuristic classification critically depends on the “competence* of its
hierarchical and heuristic match knowledge. Statements about the absolute or relative
correctness and completeness of the method can only be done in terms of assumptions owve
the absolute or relative correctness and completeness of the domain knowledge. Thes:
assumptions are therefore more precise characterizations of the knowledge types anc
competence of a PSM. In consequence, current work on PSM pays much more attention tc
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Fig.1 Heuristic Classification [Clancey, 1985].




these assumptiondBenjamins & Aben, 1997][Fensel, 1995a][Fensel et al., 1996]
[Wielinga et al., 1995][Benjamins & Pierret-Golbreich, 1996Benjamins et al., 1996]
[Fensel & Benjamins, 1996]Fensel & Straatman, to apped® Hara & Shadbolt, 1996]
[Motta & Zdrahal, 1996][Breuker, 1997][Fensel & Schonegge, submittid]

In this paper, we will take a closer look at assumptions of PSMs. In Section 2, we introduce a
general framework for specifying KBSs at a conceptual level that takes into account the
important role of assumptions. Also, we sketch the twofold role assumptions can play and
express the relationship between these two roles as the law of conservation of assumption
(cf. [Benjamins et al., 199%]In Section 3, we provide an extensive survey on assumptions
used in diagnostic problem solving. This survey provides the empirical base for our argument
and delivers numerous illustrations for our point. In Section 4, we describe the role
assumptions play in knowledge acquisition. We describe methods for assumption
verification, assumption identification, and knowledge acquisition guided by assumptions
and discuss the role that existing verification, machine learning, and knowledge discovery
techniques can play in these processes. Finally, we provide conclusions and future work.

2 THE LAW OF CONSERVATION OF ASSUMPTIONS

Mostly, papers on problem-solving methods focus on the description of reasoning strategies
and discuss their underlying assumptions as a side aspect. We take a complementary point «
view and focus on these underlying assumptions as they play important roles:

» Assumptions are necessary to characterise the precise competence of a problem-solvin
method in terms of the tasks that can be esblby it, and in terms of the domain
knowledge that is required by it.

» Assumptions are necessary to enable tractable problem solving and economic systen
development of compbeproblems. First, assumptions reduce tlogsivcase or\erage-
case compbaty of computation[Fensel & Straatman, to appeaflecond, assumptions
may reduce the costs of the systemwetigoment process through simplifying the problem
that must be sobd by the systerfirensel, 1997b]

 Finally, assumptions va to be made to ensure a proper interaction of the probleer solv
with its ervironment.

In the following, we will first discuss the different elements of a description of a KBS and
second we will sketch their proper relationships and the process of deriving them.

2.1 The Four Elements in Specifying KBSs

In [Fensel & Groenboom, 1997we provided different aspects of a specification of
knowledge-based system which are related by assumptionEi¢gee J: atask definition
defines the problem to be solved by the KBS;RI$#M defines the reasoning process of the
knowledge-based system; anddamain modeldescribes the domain knowledge of the
knowledge-based systerBach of these three elements is described independently to enable
the reuse of task descriptions in different domains, the reuse of PSMs for different tasks anc
domains, and the reuse of domain knowledge for different tasks and PSMs. Therefore, a
fourth element of a specification of a KBS isadapterthat is necessary to adjust the three



other (reusable) parts to each other and to the specific application problem.

The task definition specifies the goals that should be achieved in order to solve a given
problem, which are functionally specified as an input-output relation. A task definition also
defines assumptions about the domain knowledge. Already such a simple task like the
selection of the maximal element of a set of elements requires a preference relation as domai
knowledge. Assumptions are used to define the requirements on such a relation (e.g.
transitivity, symmetry, etc.).

The reasoning of a knowledge-based system can be describgutdlylean-solving method

A PSM consists of three parts. First, a definition of the functionality definesothpetence

of the PSM independent of its realisation. Secondoarational descriptiordefines the
dynamic reasoning process. Such an operational description describes how the competenc
can be achieved in terms of the reasoning steps and their dynamic interaction (i.e., the
knowledge and control flow). The third part of a PSM concessumptionsabout the
domain knowledge. Each inference step requires a specific type of domain knowledge with
specific characteristics.

The description of thdomain modeintroduces the domain knowledge as it is required by the
PSM and the task definition. Three elements are needed to define a domain model. First, ¢
description of properties of the domain knowledge at a meta-levelnEta-knowledge
characterises properties of the domain knowledge. It is the counterpart of the assumptions ot
domain knowledge made by the other parts of a KBS specification: assumptions made abou
domain knowledge by these parts, must be stated as properties of the domain knowledge. Th
second element of a domain model concerngitimveain knowledgandcase datanecessary

to define the task in the given application domain, and necessary to carry out the inference
steps of the chosen problem-solving method. The third element is formectdmyal
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Fig. 2 The different elements of a specification of a knowledge-based systems.



assumptionsthat link the domain knowledge with the actual domain. These external
assumptions capture the implicit and explicit assumptions a modeler made while building a
domain model of the real world.

The description of andaptermaps the different terminologies of task definition, PSM, and
domain model onto each other, collects the assumptions of task and PSM and may introduct
further assumptions that have to be made to relate the competence of a PSM with the
functionality as it is introduced by the task definition. Because it relates the three other parts
of a specification together and establishes their relationship in a way that meets the specific
application problem, they can be described independently and selected from libraries. The
consistent combination and adaptation of the three different components to the specific
aspects of the given application (because they should be reusable they need to abstract froi
specific aspects of application problems) must be provided by the adapter.

2.2 The Law of Consewation of Assumptions

When establishing the proper relationship between PSM and task, one usually requires
correctnessandcompletenessf the PSM relative to the goals of the task:

» Correctnesgequires that each output that is ded by the PSM also fuléi the goal of
the task:
0i,0 (PSMy (i) OPSMc(i,0) — TASK (i) O TASKG(i,0))
simplified:
0i,o (PSM{,0) - TASK(i,0))
» Completenessequires that the PSM pridles an output for each input that leads to a
fulfilled goal of the task:
Oi (TASK(i) O 0o TASKg(1,07) -» PSMy (i) O oy PSMc(i,0 5))
simplified:
Oi (Coq TASK(i,09) — [by, PSM(,0,))
It is not necessarily the same output because the task may not be a functiondra., se
output are possible).

However, a perfect match is unrealistic in many cases. In general, most problems tackled with
KBSs are inherently complex and intractable (see [Bgander, 1991] [Bylander et al.,

1991] and[Nebel, 1996).1 A PSM has to describe not just a realization of the functionality,
but one which takes into account the constraints of the reasoning process and the complexit
of the task. The way PSMs achieve efficient realization of functionality is by making
assumptiongFensel & Straatman, to appeaflhese assumptions put restrictions on the
context of the PSM, such as the domain knowledge and the possible inputs of the method o
the precise definition of the goal to be achieved when applying the PSM. Notice that such
assumptions can work in two directions to achieve this result. First, they can restrict the
complexity of the problem, that is, weaken the task definition in such a way that the PSM
competence is sufficient to realize the task. Second, they can strengthen the competence ¢
the PSM by assuming (extra) domain knowledge.

* Wealening Reducing the desired functionality of the system and reducing therefore the
complity of the problem by introducing assumptions about the precise tasitidafi

1. Exceptions are classifition problems which ka often knavn polynomial time complety (see[Goel et al.,
1987).
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Fig.3 The two effects of assumptions.

An example of this type of change is to no longer require an optimal solutibanly an
acceptable one, or to makhe singledult assumption in model-based diagnosis.

» StrengtheningIntroducing assumptions about the domainvidedge (or the user of the
system) which reduces the functionality or the coxipleof the part of the problem that
is soled by the PSM. In terms of compity analysis, the domain kmtedge or the user
of the system is used as an oracle thatesolsomplg parts of the problemTrhese
requirements therefore strengthen the functionality of the method.

Both strategies are complementary. Informally:
TASK - AssumptioReaiening= PSM +AsSUMPLiORengthening

That is, the sum of both types of assumptions may be constant. Decreasing the strength of on
assumptions type can be compensated by increasing the strength of the other figersee
3), i.e.

TASK - PSM =A = Assumptioqeaiening + ASSUMPLiORrengthening

This is called thdaw of conservation of assumptions [Benjamins et al., 1996]More
formally, both types of assumptions appear at different places in the implications that define
the relationship between PSM and task:

» Adapted Corectness
[i,0 (Assumptioyengthening? PSM{,0) — (= AssumptioReaiening” TASK(i,0)))
» Adapted Completeness
Ui (Coy TASK(i,01) DASSUMPLiOReaiening
- (= Assumptiogtrengtheningp [, PSM(,0))

Recalling that an implication is true if the premise is false or if the premise and the conclusion
are true, this twofold impact can be explained easily. Assumptions weaken the implication by
either strengthening the premise or by weakening its conclésion.

The first type of assumptions is used to weaken the goal which must be achieved by the PSN
and the second type of assumption is used to improve the effect which can be achieved by th
method by requiring external sources for its reasoning process. Therefore, we will call the
first type teleological assumptions (i.eAssumptiongieoiogicat) and the second type
ontological assumptions (i.eAssuMptiongojogicar)- BOth types of assumptions serve the

2- A formulaa is wealer than a formul@ iff every model ofp is also a model dof, i.e.f |=a and |3 - a.



same purpose of closing the gap between the PSM and the task goal which should be
achieved by it. On the other hand, both types achieve this through a move in quite the
opposite direction (sdeéigure 3.

In the second case &ligure 3 the PSM makes less assumptions about available domain
knowledge. This must be compensated by stronger teleological assumptions, i.e. by
decreasing the actual goal which can be achieved by the method. These relationships make
natural to view the sum of the effects of both types of assumptions as constante Dfiéhe

two different types of assumptions (i.e., the direction of their influence) remains different.
Ontological assumptions are required to define the functionality of a PSM, i.extieeykthe

effect which can be achieved by the operational specification of a PSM. Teleological
assumptions are required to close the gap between this functionality of a PSM and a giver
goal. They have taveakenthe goal in cases where the final goal is beyond the scope of the
functionality of the PSM.

Besides their different direction, both types of assumptions have something in common
which leads to the natural question whether they are interchangeable. The composed outcom
of their joined effort is constant. The question arises whether and how the weakening or
strengthening of ontological assumptions can be compensated by strengthening or weakenin
the teleological assumptions and vice versa. This question is quite essential for the
applicability of a PSM for a given task and domain. The knowledge requirements of a PSM
can be weakened or strengthened according to

* the available domain knwledge,
* the efort which is required to dare and to model further kmgdedge, and

 the (teleological) assumptions which can be made to reduce the goal which must be
achieved.

Teleological assumptions have to be made if the (ontological) assumptions about available
domain knowledge cannot be satisfied to an extent that would enable the achievement of the
goals as they are originally specified. The applicability problem for PSMs is therefore
essentially a question of the relationships between these two different types of assumptions
We will illustrate this by an example taken from the area of diagnosis with component
models.

Component-based diagnosis with multipdeilts is in the wrst case xponential in the
number of component$Bylander et al., 199)] Every element of the peer-set of the
set of annotated components is a possippothesis. If one is not interested in problem-
solving in principle It in practice, further assumptionsveao be introduced that either
decrease theavst-case, or at least theesage-case behiar. A drastic vay to reduce the
complity of the diagnostic task is achied by thesingle-faultor N-fault assumption
(SFA) [Davis, 1984] which reduces the compigy to polynomial in the number of
components. If the singlexilt assumption holds, the incorrect bebaof the deice is
completely &plainable by onediling component. Interestinglyhe same assumption
can either be interpreted as a requirement on domaimlé&dge or as a restriction of the
delivered functionality The SIA defines either strong requirements on thevjoled
domain knavledge, or signifiantly restricts the diagnostic problems that can correctly
be handled by the diagnostic system.



» If the SRA has to be satigd by thedomain knowledg then each possibladlt has
to be represented as a single entityprinciple this causes comgity problems for
the domain knweledge as eachabilt combination (combination ofatlty
components) has to be representedvéer, additional domain kneledge could be
used to restrict thexponential gravth. [Davis, 1984]discusses anxample of a
representation change where aadif case (i.e., 15 ddrent combinations ofiilts)
is transformed into a singlaudlt. A chip with four ports can causaults on each
port. When we kna that the indridual ports neer fail, but only the chip as a whole,
a fault on four ports can be represented as aunk 6f the chip. Een without such a
representation change, we do not necessarig @ represent all possiblauiit
combinationsWe could, for gample, &clude all combinations that are not possible
or likely in the specifi domain (gpert knavledge).

* Instead of formulating the requirement gbon the domain kndedge, one can
also weakn thetask defnition by this assumptiohis means that the competence
of the PSM meets the task defiion under the assumption that only singheilfs
occur That is, only in cases where a singelf occurs, the methodorks correctly
and complete.

It turns out that the same assumption can either be viewed as a requirement on domair
knowledge or as a restriction of the goal of the task. Therefore, it is not an internal property of
an assumption that decides its status, instead it is the functional role it plays during system
development or problem solving that creates this distinction. Formulating it as a requirement
asks for strong effort in acquiring domain knowledge during system development, and
formulating it as a restriction asks for additional external effort during problem solving if the
given case does not fulfil the restrictions and cannot be handled properly by the limited
system.

3 ASSUMPTIONS IN DIAGNOSTIC PROBLEM SOLVING

The first diagnostic systems built were heuristic systems, in the sense that they containec
compiled knowledge which linked symptoms directly to hypotheses (usually through rules).
With these systems, only foreseen symptoms can be diagnosed, and heuristic knowledge the
links symptoms with possible faults needs to be available. One of the main principles
underlying model-based diagnodiBavis, 1984]is the use of a domain model (called
Structure, Behavior, Function (SBF) models j@handrasekaran, 1991] Heuristic
knowledge that links symptoms with causes is no longer necessarily in these systems. The
domain model is used for predicting the desired device behavior, which is then compared to
the observed behavior. A discrepancy indicates a symptom. General reasoning technique:
such as constraint satisfaction or truth maintenance can be used to derive diagnoses th:
explain the actual behavior of the device using its model. Because the reasoning part is
represented separately from domain knowledge, it can be reused for different domains. This
paradigm of model-based diagnosis gave rise to the development of general approaches t
diagnosis, such as “constraint suspensi@evis, 1984] DART [Genesereth, 1984GDE

[de Kleer & Williams, 1987] and several extensions to GDE (GD[Struss & Dressler,

1989] SherlocKde Kleer & Williams, 1989



In this section, we will focus on assumptions underlying these approaches to diagnostic
problem solving. First, we discuss assumptions that are necessary to relate the task definitiol
of a diagnostic system with its real-world environment (see Section 3.1). That is, assumptions
on the available case data, the required domain knowledge and the problem type. Second, w
discuss assumptions introduced to reduce the complexity of the reasoning process necessa
to execute the diagnostic task (see Section 3.2). Such assumptions are introduced to eithe
change the worst-case complexity or the average-case behavior of problem solving. Third, we
sketch further assumptions that are related to the approprtataction of the problem

solver with its environment (see Section 3.3).

3.1 Assumptions Necessary to Defe the DiagnosticTask

In model-based diagnosis (§fle Kleer et al., 1992] the definition of the task of the KBS
requires asystem descriptionf the device under consideration anded of observations
where some indicateormal and otherabnormalbehavior. The goal of the task is to find a
diagnosis that, together with the system descripti@xplains the observations. In the
following, we discuss four different aspects of such a task definition and show the
assumptions related to each of them. The four aspects are: identifying abnormalities,
identifying causes of these abnormalities, defining hypotheses, and defining diagnoses.

3.1.1 Identifying Abnormalities

Identification of abnormal behavior is necessary before a diagnostic process can be started t
find explanations for the abnormalities. This identification task requires three kinds of
knowledge, of which two are related to the type of input, and one to the interpretation of
possible discrepancies (§8&njamins, 1993}

* observation®f the behaior of the deice must be pnded to the diagnostic reasoner;
» abehavioal descriptionof the deice must be pnaded to the diagnostic reasoner;

» knowledge concerning theinf)precisenessof the obserations and the behmral
description as well asomparison knowleag(thresholds, etc.) are necessary to decide
whether a discrepancis signifcant. Other required kmdedge concerns the
interpretation omissing valugsand whether an obseion can hee seeral \alues (i.e.,
its value type).

Relevant assumptions state that the two types of inputs (i.e., observations amd behaviora
descriptions) need to beeliable. Otherwise, the discrepancy could be explained by a
measuring fault or a modelling fault. In other words, these assumptions guarantee that if a
prediction yields a different behavior than the observed behavior of the artefact, then the
artefact has a defeffdbavis & Hamscher, 1988]

These assumptions are also necessary for the meta-level decision whether a diagnosi
problem is given at all (i.e., whether there is an abnormality in system behavior). This
decision relies on a further assumption: leedesign error assumptigBavis, 1984]which

says that if no fault occurs, then the device must be able to achieve the desired behavior. It
other words, the discrepancy must be the result of a faulty situation where some parts of the
system are defect. It cannot be the result of a situation where the system works correctly, bu
cannot achieve the desired functionality because it is not designed for this. If this assumption
does not hold, one has a design problem and not a diagnostic problem.



10

3.1.2 Identifying Causes

Another purpose of the system description is the identification of possible causes of faulty
behavior. This cause-identification knowledge mustddable [Davis & Hamscher, 1988]

or, in other words, the knowledge used in model-based diagnosis is assumed to be a correc
and complete description of the artefact. Correct and complete in the sense, that it enables th
derivation of correct and complete diagnoses if discrepancies appeaccordance with
different types of device models and diagnostic methods, these assumptions wear differen
clothes. In the following, we restrict our attention to component-oriented device models that
describe a device in terms of components, their behaviors (a functional description), and their
connection$. The set of all possible hypotheses is the power-set of the set of annotated
components

{ modg; (cy), modsg, (Cy), ..., mode, (c)}h

where the annotatiomodeg (c;) describes that theth component is in mode[Davis, 1984]
has pointed out that one should be aware of the underlying assumptions for such a diagnosti
approach and listed a number of them.

First, thelocalised failure of functiomssumption: the device must be decomposable in well-
defined and localised entities (i.e., components) that can be treated as causes of fault
behavior. Second, thesemponents have a functional descriptibat provides the (correct)
output for their possible inputs. If this functional description is local, that is, it does not refer
to the functioning of the whole device, the function in structurassumptiorjde Kleer &

Brown, 1984]is satisfied. Several diagnostic methods also expect the reverse of the
functional descriptions, thus, rules thirive the expected input from the provided output
called “inference rules” ifDavis, 1984] If only correct functional descriptions are available,
fault behavior is defined as any other behavior than the correct one. Fault behavior of
components can be constrained by including fault models, tHahctjonal descriptions of

the components in case they are brofan[de Kleer & Williams, 1989][Struss & Dressler,
1989). If one assumes that these functional descriptions are completeo(tipdete fault
knowledgeassumption), then components can be considered innocent if none of their fault
descriptions is consistent with the observed faulty behavior. A result of using fault models is
that all kinds of non-specifiedand physically impossiblebehaviors of a component are
excluded as diagnosis. For example, using fault models, it becomes impossible to conclude
that the faultone of two light bulbs is not workingis explained by a defect battery that does

not provide power and a defect lamp that lights without electricityf$tfuss & Dressler,
1989).

Further assumptions that are related to the functional descriptions of componentsare the
fault maskingand thenon intermittencyassumption. The former assumption states that the
defect of an individual or composite component, or of the entire device must be visible by
changed outputs (cfDavis & Hamscher, 1988]Raiman, 1992] According to the latter
assumption, a component that gets identical inputs at different points of time, must produce

A typical problem of diagnosis without kwtedge aboutdult models (i.e., incomplete kwéedge) is that the reasoner
provides, in addition to the right diagnoses, also wrong diagnd$es.result is completeub not correct because the
rovided domain kneledge is not complete.

" Itis a critical modelling decision what to wieas a component and which types of interactions are represen{&hy,
1984). Several points of vier are possible to decide what ig@aeded as being a component. fBiént levels of plysical
representations result in féifent entities; the independent entities that are used in the aotuirig process of the araet
could be used as components; or functional unities of theetresuld be seen as components.
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identical outputs. In other words, the output is a function of the inpufRafman et al.,
1991). [Raiman et al., 1991fargue that intermittency results from incomplete input
specifications of components, but that it is impossible to get rid of it (it is impossible to
represent all required additional inputs in a complete way).

A third assumption underlying many diagnostic approaches isiahaults in structure
assumption (cf.[Davis & Hamscher, 1988]that manifests itself in different variants
according to the particular domain. The assumption states that the interactions of the
components are correctly modelled and that they are complete. This assumption gives rise t
three different classes of more specific assumptions. Firstnohdéroken interaction
assumption states that connections between the components work correctly (e.g. no wire:
between components are brokérh).this is too strong, the assumption can be weakened by
representing the connections themselves as components too. Second, uhexpected
directionsassumption (or existence of a causal pathway assumfiianis, 1984)] states

that the directions of the interactions are correctly modelled and are complete. For example, ¢
light bulb gets power from a battery and there is no interaction in the opposite direction. The
no hidden interactionassumption (cf[Bottcher, 1996] assumes that there are no non-
represented interactions (i.e., closed-world assumptions on connections). A bridge fault
[Davis, 1984]is an example of a violation of this assumption in the electronic domain.
Electronic devices whose components unintendedly interact through heat exchange, is
another examplBottcher, 1996]In the worst case, all potential unintended interaction paths
between components are represeifigdist & Welhalm, 1990]The no hidden interactions
assumption is critical since most models (like design models of the device) describe correctly
working devices and unexpected interactions are therefore precisely not mentioned. A
refinement of this assumptions is that there aressembly errorgi.e., every individual
component works correctly but they have been wired up incorrectly).

3.1.3 Defining Hypotheses

In addition to knowledge that is required to identify a discrepancy and knowledge that
provides hypotheses used to explain these discrepancies, one requires further knowledge t
decide which type of explanation is requir§@onsole & Torasso, 1993jistinguish two

types of explanations: weak explanations, that @mesistentwith the observations (no
contradiction can be derived from the union of the device model, the observations, and the
hypothesis), and strong explanations, tingbly the observations (the observations can be
derived from the device model and the hypothesis). Both types of explanation can be
combined by dividing observations in two classes: observations that need to be explained by
deriving them from a hypothesis, and observations that need only be consistent with the
hypothesis. In this case one requikeswledge that allows to divide the set of observations
The decision which type of explanation to use, can only be made based on assumptions abot
the environment in which the KBS is used.

3.1.4 Defining Diagnoses

Having established observations, hypotheses and an explanatory relation that relates
hypotheses with observations, one must establish the notiodiaghosis Not each

5 It is possible to represent the interactions between components as pogsitieses it this leads to e problems (see
3.1.5.
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hypothesis that correctly explains all observations needs to be a desired diagnosis. One coul
accept onlyparsimonioushypotheses adiagnosedcf. [Bylander et al., 199}] A hypothesis

or explanation H is parsimoniousHifis an explanation and there exists no other hypothesis
H’ that also is an explanation ahid < H. One has to make assumptions about the desired
diagnosis (cf[Mcllraith, 1994) in order to define the partial ordering (<) on hypotheses. For
example, whether the diagnostic task is concerned with finding all components that are
necessarily fault to explain the system behavior, or whether it is concerned with finding all
components that are necessarily correct to explain the system behavior. In the first case, w
aim at economy in repair, whereas in safety critical applications (e.g., nuclear power plants)
one should obviously choose for the second case.

As shown by[Mcllraith, 1994] the assumptions about the type of explanation relation (i.e.,
consistency versus derivability) and about the explanations (i.e., definition of parsimony)
make also strong commitments on the domain knowledge (the device model) that is used tc
describe the system. If we ask for a consistent explanation with minimal sets of faulty
components (i.ek; < H, if H; assumes less components as being fault thanwe need
knowledge that constrains the normal behavior of components. Otherwise we would simply
derive all components as correct. If we ask for a consistent explanation with minimal sets of
correct components (i.ed; < H, if H; assumes less components as being correcthian

we need knowledge that constrains the abnormal behavior of components. Otherwise we
would simply derive all components as faulty.

The definition of parsimonious hypotheses introdugaeerenceon hypotheses. This could

be extended by defining further preferences on diagnoses to select one optimal one (e.g., b
introducing assumptions related to the probability of faults). Again, knowledge about
preferences must be available to define a preference function and a corresponding ordering.

3.1.5 Summary

Figure 4summarises the assumptions that are discussed above and groups them according 1
their purpose. All these assumptions are necessary to relate the definition of the functionality
of the diagnostic system with the diagnostic problem (i.e., the task) to be solved and with the
domain knowledge that is required to define the task. ThAplevides an explanation of the
assumptions along with the role they play (function), the domain they are about (case data,
domain knowledge or task), and some references where they are discussed in more detail.

Table 1: Effect Assumptions in component-oriented diagnosis
(cd = case data, dk = domain knwledge, t = task).

name explanation is about | function some references
existence of obserations must be prided | cd It is necessary for detecting | [Benjamins,
obsenations to the diagnostic system discrepancies. 1993]
reliability of The pravided obserations cd It is necessary for assuming | [Benjamins,
obsenations must be reliable. that the discrepagamust be 1993] [Davis &
explained by a diagnosis. Hamscher1988]
existence of a The desired system beliar dk It is necessary for detecting | [Benjamins,
behaioral must be knan to the discrepancies. 1993]
description diagnostic reasoner
reliability of The description of the system| dk It is necessary for assuming | [Benjamins,
behaioral must be reliable. that the discrepaganust be 1993] [Davis &
description explained by a diagnosis. Hamscher1988]
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Table 1: Effect Assumptions in component-oriented diagnosis
(cd = case data, dk = domain knwledge, t = task).

name explanation is about | function some references
existence of Knowledge is required to dk It is necessary for interpreting| [Benjamins,
knowledge to identify| compare the obseations with discrepancies. 1993]
discrepances the behwgioral description.

reliability of the The knavledge used to detect| dk It is necessary for interpreting| [Benjamins,
discrepang discrepancies must be reliable. discrepancies correctly 1993]
identification

knowledge

no design error

The discrepancbetween
expected and actual behar
does not result from the
(incorrect) design of the diee.

The behuioral discrepangis a
fault and not just an
impossibility,

[Davis, 1984]

existence of a set of

The deice can be decomposegddk

The entire deice can be

[Davis, 1984]

components into a set of components. decomposed into smaller units[Davis &
that constitute the dee. Hamscher1988]
localized &ilure of Faulty components can be dk The reasons foafilty behaior | [Davis, 1984]
function, no function| identified as causes. do not hae to be constructed | [de Kleer &
in structure but can be selected from aife | Brown, 1984]
set.
existence of a set of | Components could ka seeral | dk The diagnostic reasoner can | [Struss &
annotations (i.e., of | behaioral modes that need to select from the beh#oral Dressler1989]

component modes)

be pravided.

modes pruided for each
component.

[de Kleer et al.,
1992]

completeness of the| All possible modes of the dk It is used to infer the mode of [g[Struss &
set of annotations = | components are kman. component if all other Dressler 1989]
complete &ult behaiors do not (een not [de Kleer et al.,
knowledge partially) explain the &ult. 1992]
existence of input- | This knawledge defies the dk The behwioral description of | [de Kleer &
output descriptions of input-output behéor of the the components is required tg Williams, 1987]
the components components. detect theirdulty behsior and | [Davis &
to derve the @erall behaior of | Hamscher1988]
the complete dece.
existence of output- | This knavledge defies the dk This knawledge can be used tp[Davis, 1984]
input descriptions of | output-input relation of the derive additional discrepancies[Raiman, 1989]
the components components.
existence of This knavledge defies the dk The behwioral description of | [de Kleer &
functional input-output behdor of the the components is required tg Williams, 1987]
descriptions ofdulty | components in case thare identify different possibledults | [Struss &
behaior of broken. of a component. Dressler1989]
components
complete behaoral | All possible beheiors of a dk It is used to completely [de Kleer &
descriptions component are modelled by its constrain the possible behar | Williams, 1987]
(complete &ult functional description. of a component. [Struss &
models) Dressler 1989]
no fault masking A fault of a component is cd & dk | Itis necessary for detecting | [Davis, 1984]
visible in its behaior and in the faulty components. [Davis &
behaior of the entire déce. Hamscherl1988]
[Raiman, 1992]
non intermitteng The output of a component is|acd It is necessary for interpreting| [Davis, 1984]

function of the input (e.g., the
behaior does not changever
time).

the discrepancbetween an
obseration and an output of &
behaioral description of a

[Raiman et al.,
1991]

component.
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Table 1: Effect Assumptions in component-oriented diagnosis
(cd = case data, dk = domain knwledge, t = task).

properly

the faulty behaior and the
interaction model describes tH
real interactions.

name explanation is about | function some references
existence of a model| It assumes that the possible | dk This model is required to dg& | [Davis, 1984]
of the component interactions between the overall behaior of the [Davis &
interactions components are kam to the system and the local inputs off Hamscher1988]
reasoner components from the local

outputs of the components.
no fault in structure | Faulty components are the onjydk Only components need to be | [Davis, 1984]
assumption causes. treated as possible causes for [Davis &

the faulty behaior. Hamscher1988]
no brolen The interactions wrk properly | dk Only components need to be | [Davis, 1984]
interactions i.e., the connectionsark treated as possible causes for [Davis &

Hamscher1988]
e

no unepected

The direction of the interaction dk

Only components need to be

[Davis, 1984]

obsenations

between obseations that
describes normal and abnorm
behaior.

abnormal behaor must be
explained.

direction is as represented. treated as possible causes fo
the faulty behaior and the
interaction model describes the
real interactions.
no hidden There are no interactions that| dk Only components need to be | [Davis, 1984]
interactions (closed | are not represented in the treated as possible causes for [Bottcher 1996]
world assumption) | model. the faulty behaior and the
interaction model describes the
real interactions.
no assembly error | The components are not wired dk Only components need to be | [Davis &
incorrectly treated as possible causes for Hamscherl1988]
the faulty behaior and the [Bottcher 1996]
interaction model describes the
real interactions.
type of xplanation | Need an obseation be dk &t The problem solving is either | [Console &
relation (type of consistent with theypothesis constraints satisftion or Torasso, 1992]
hypotheses) or must it be devable from it. abductve inference. [de Kleer et al.,
1992] [ten Teije
& van Harmelen,
1996]
classiftation of It introduces an distinction dk In abductve inference only the [Console &

Torasso, 1992]

type of xplanation | Should the set offult dk &t The diagnosis is used for an | [Mcllraith, 1994]
(type of diagnosis) | components contain all economic repair procesgnsus

components that need to be it is used for safety-critical

fault or that could beafilt. monitoring.
preference It defines preferences betweendk Necessary for selecting the | [de Kleer &
knowledge on diagnoses. diagnoses with high Williams, 1987]
diagnoses preferences. [Davis &

Hamscher1988]

All these assumptions are necessary to relate a model of the device with the actual device
under concern. “There is no such thing as an assumption-free representation. Every model
every representation contains simplifying assumptigbBsivis & Hamscher, 1988]If the
assumptions are too strong, one could consider weakening®titowever, this raises
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Assumptions for Effect

7 N\ T

Assumptions for Assumptions for Assumptions for Assumptions for
identifying identifying causes defining hypotheses defining diagnoses
abnormalities
}— cause identification consistency — Bgtjrgirrr]:%%ious
— observations knowledge derivabilit Oreferences
i — derivability —
': exll_stg_rlm_;:e | set of devices assificat fault
reliability localized — classification
failure of of observations probabilities
— behavioral description function .
': existence —— no function in
o structure
reliability —— set of annotations
— discrepancy i —— existence
dentification k —— correct & complete
nowledge _ o
existence —— functional description
': reliability — existence
—— correct
L no design error f— no fault
masking
—— complete
non
intermittency

—— output-input relation
fault behaiors

complete fault
models

—— description of the interactions of components

existence
—— no fault in structure
correct
no broken

interactions
—— complete

no unexpected
directions
no hidden

interactions

no assembly
error

no heat exchange between electronical devices

Fig.4 Assumptions for Effect.

another problem in model-based diagnosis, namehigts complexity or intractabilityThis
will be discussed in the following section.

6 For example, thg can be weadned by representing all desired interactions as components (e.g., wires) thaitdayd f
representing additional possibilities of interactions (e.g., electronis@dedecan interact via heakahange)[Bottcher
1996} by representing all potential unintended interaction paths between comp@Peiss & Welhalm, 1990] by
representing additional inputs to get rid of intermitiefRaiman et al., 1991]Each of these weakings signiftantly
increases the computational conxite of the problem-solving process.
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3.2 Assumptions Necessary to Defe an Efficient Problem Soher

Besides the assumptions that are necessary to define the diagnostic task, further assumptiol
are necessary because of the complexity of model-based diagnosis. Component-base
diagnosis is in the worst case exponential in the number of annotated compi@adatslér

et al., 1991). Every element of the power-set of the set of annotated components is a possible
hypothesis. As we are not interested in problem-solving in principle but in practice, further
assumptions have to be introduced that either decrease the worst-case, or at least the averac
case behavior.

3.2.1 Reducing theWorst-Case Complexity:The Single-Fault Assumption

A drastic way to reduce the complexity of the diagnostic task is achieved bwnghe fault

or N-fault assumptionDavis, 1984] which reduces the complexity to polynomial in the
number of components. If the single-fault assumption holds, the incorrect behavior of the
device is completely explainable by one failing component. As already mentiosection

2.2, this assumption defines either strong requirements on the provided domain knowledge,
or significantly restricts the diagnostic problems that can correctly be handled by the
diagnostic system. In the first case, each possible fault has to be represented as a single entit
In the second case, the methods works only in cases where a single fault occurs.

3.2.2 Reducing theAverage-Case behdor: The Minimality Assumption of GDE

As the single-fault assumption might be too strong an assumption for several applications,
either as a requirement on the domain knowledge or as a restriction on tfieadsk, 1987]

and [de Kleer & Williams, 1987]provide approaches able to deal with multiple faults.
However, this re-introduces the complexity problems of MBD. To deal with this problem,
GDE [de Kleer & Williams, 1987]exploits theminimality assumptionwhich reduces, in
practical cases, the exponential worst case behavior to a complexity that grows with the
square of the number of components. In GDE, this assumptions helps reducing the
complexity in two ways. First, a conflict is a set of components that cannot work correctly
given the provided domain knowledge and the observed behavior. Under the minimality
assumption, each super-set of a conflict is also a conflict and all conflicts can be representec
by minimal conflicts. Second, a hypothesis contains at least one component of each conflict.
Every super-set of such a hypothesis is again a hypothesis. Therefore, diagnoses can b
represented by minimal diagnoses. The minimality assumption requires that diagnoses are
independent or monotonic (s¢Bylander et al., 199)] a diagnosis that assumes more
components as being faulty, explains more observations.

A drastic way to ensure that the minimality assumption holds, is to neglect any knowledge
about the behavior of faulty components. Thus, any behavior that is not correct is considerec
as fault. A disadvantage of this is that physical rules may be violated (i.e., existing knowledge
about faulty behavior). We already mentioned the example provid@&irirss & Dressler,

1989] where a fault (one of two bulbs does not light) is explained by a broken battery that

does not provide power and a broken bulb that lights without power. Knowledge about how
components behave when they are faulty (called fault models) could be used to constrain the
set of diagnoses derived by the system. On the other hand, it increases the complexity of th
task. If for one component possible fault behaviors are provided, this leadsaitd possible

states instead of two (correct and fault). The maximum number of candidates increases fromr
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2 to (1)

A similar extension of GDE that includes fault models, is the Sherlock systejdg¢fleer

& Williams, 1989). With fault models, it is no longer guaranteed that every super-set of the
faulty components that constitute the diagnosis, is also a diagnosis, and therefore the
minimality assumption as such cannot be exploited. In Sherlock, a diagnosis does not only
contain fault components (and implicitly assumes that all other, not mentioned, components
are correct), but it contains a set of components assumed to work correctly and a set o
components assumed to be fault. A conflict is now a set of some correct and fault components
that is inconsistent with the provided domain knowledge and the observations. In order to
accommodate to this situatiofde Kleer et al., 1992fxtend the concept of minimal
diagnoses to kernel diagnoses and characterise the conditions under which the minimality
assumption still holds. The kernel diagnoses are given by the prime implicants of the minimal
conflicts. Moreover, the minimal sets of kernel diagnoses sufficient to cover every diagnosis
correspond to the irredundant sets of prime impligaofsall minimal conflicts. These
extensions cause drastic additional effort, because there can be exponentially more kerne
diagnoses than minimal diagnoses, and finding irredundant sets of prime implicants is NP-
hard. Thereforgde Kleer et al., 1992¢haracterise two assumptions under which the kernel
diagnoses are identical to the minimal diagnoses. The kernel diagnoses are identical to the
minimal diagnoses if all conflicts contain only fault components. In this case, there is again
only one irredundant set of minimal diagnoses (the set containing all minimal diagnoses). The
two assumptions that can ensure these properties argntbrance of abnormal behavior
assumption and tHamited knowledge of abnormal behavassumption.

The ignorance of abnormal behavior assumption excludes knowledge about faulty behavior
and thus characterises the original situation of GDE. The limited knowledge of abnormal
behavior assumption states that the knowledge of abnormal behavior does not rule out any
diagnosis indicating a set of faulty components, if there exist a valid diagnosis indicating a
subset of them as faulty components, and if the additionat components assumed faulty are nc
inconsistent with the observations and the system describiitie. latter assumption is a
refinement of the former, that is, the truth of the ignorance of abnormal behavior assumption
implies the truth of the limited knowledge of abnormal behavior assumption.

A similar type of assumption is used [Bylander et al., 1991jo characterise different
complexity classes of component-based diagnosis. In general, finding one or all diagnoses i
intractable. Thendependenaindmonotonicassumption, which have the same effect as the
limited knowledge of abnormal behavior assumption, require that each super-set of a
diagnosis indicating a set of faulty components is also a diag%bsiﬂnis case, the worst-

case complexity of finding one minimal diagnosis grows polynomially with the square of the
number of components. However, the task of finding all minimal diagnoses is still NP-hard in
the number of components. This corresponds to the fact that the minimality assumption of
GDE (i.e., the ignorance of abnormal behavior and limited knowledge of abnormal behavior
assumptions), that searches for all diagnoses, does not change the worst-case but only tr

7 See[McCluskey, 1956] An implicant is a conjunction of posig and ngative literals.Without fault models, minimal
hypotheses contain only gative literals ¢ ok(g)). In the case ofdult models we hee positve and ngative literals (ok(g
and ~ok(g)) in the lypothesesTherefore, minimality cannot be simply defd by set inclusion of the literals of a
conjunction.
8. [Mcllraith, 1994] generalizes these assumptions for the dual case of diagnosing a minimal set of compaments peo
correct and applies these assumptions for characterizing minimal abdliatjnoses.

* More preciselythe explanatory pwer of a lypothesis increases monotonously by addadtfor correct components.
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average-case behavior of the diagnostic reasoner.

3.2.3 Search Guidance

The complexity of component-based diagnosis (especially when working with fault models)
requires further assumptions that enable efficient reasoning for practical cagésriss,

1992] [Boéttcher & Dressler, 1993 Again, these assumptions do not change the worst case
complexity but should reduce the necessary effort in practical cases. A well-known notion to
increase efficiency is a reasoning focus. Defining a focus for the reasoning process can be
achieved by exploiting hierarchies or probability information. herarchically-layered
device-modehssumption assumes the existence of hierarchically layered models that allow
step wise refinement of diagnosis to reduce the complexity of the diagnostic process (cf. the
complexity analysis of hierarchical structures[@bel et al., 1987%] The large number of
components at the lowest level of refinement is replaced by a small number of components a
a higher level. Only the relevant parts of the model are refined during the problem-solving
process. Théierarchically-layered behavioral-modelssumption assumes the existence of
more abstract descriptions of the behavior that can improve the efficiency because reasoning
can be performed at a more coarse grained, and thus simpler, lej@gb(gcHanna, 1994]
Theexistence of probabilitiegassumption assumes knowledge about the probability of faults
that can be used to guide the search process for diagnoses by focusing on faults with higl
probabilities. Usually, these probabilities introduce new assumptions (e.goriponents

fail independenthassumptioride Kleer & Williams, 1989}

All these knowledge types and their related assumptions rely on further assumptions
concerning the utility of this search control knowledge. For example, the hierarchically-
layered device model improves only the search process when the faults are not distributed ir
a way that enforces the problem solver to expand each abstract component descriptions ti
their lowest levels. It significantly improves the search process if the problem solver need to
refine only one abstract component description at each level.

3.2.4 Summary

Figure 5summarises the assumptions and groups them according to their purpose. All these
assumptions are introduced to reduce the computational effort required to solve the problem
Table2 provides an explanation of the assumptions along with the role they play (function),
the domain they are about (case data, domain knowledge or task), and some references whe
they are discussed in more detail.

Table 2: EfficiencyAssumptions in component-oriented diagnosis
(cd = case data, dk = domain knwledge, t = task).

name explanation is about | function some references
single fault (SR), There is one or there are at | dk ort It polynomializes the wrst- | [Davis, 1984]
N-fault mostN faults. case compbaty for finding

one or all diagnoses.
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Table 2: EfficiencyAssumptions in component-oriented diagnosis
(cd = case data, dk = domain knwledge, t = task).

name explanation is about | function some references
minimality Sets of ypotheses can be dk It polynomializes the [Reiter, 1987]
represented by one minimal average-case behar for [de Kleer &
hypothesis. finding all diagnoses. Williams, 1987]
[Bylander et al.,
1991] [de Kleer
etal., 1992]
ignorance of abnormal No knavledge that constrains | dk It polynomializes the [de Kleer &
behaior possible &ulty behaior is average-case bevwiar for Williams, 1987]
provided. finding all diagnoses. [de Kleer et al.,
1992]
independengc The «planatory pwer of a dk It polynomializes the wrst- | [Bylander et al.,
diagnosis is the union of the case compbaty for finding | 1991]
explanatory puver of its one diagnoses.
elements.
monotonicity The planatory pwer of a dk It polynomializes the erst- | [Bylander et al.,
diagnosis increases case complaty for finding | 1991]
monotonously with its size. one diagnoses.
limited knavledge of | Valid diagnoses do not becomealk It polynomializes the [de Kleer et al.,
abnormal behaor invalid by adding further average-case bevwiar for 1992]
correct or ult components to finding all diagnoses.
it.
existence of search This knawledge is used to dk It improves the werage-case| [Struss, 1992]
control knavledge guide the search process for behaior for finding all [Bottcher &
diagnoses. diagnoses. Dressler1994]
existence of a The deice model is dk The hierarchical structure of [Goel et al.,
hierarchically-layered | hierarchically structured. the deice focuses the search1987] [Struss,
device-model process. 1992] [Bottcher
& Dressler 1994]
existence of a The behwioral description of | dk Abstract descriptions of the | [Struss, 1992)]
hierarchically-layered | the system is hierarchically behaior should reduce the | [Abu-Hanna,
behaioral-model structured. search dbrt. 1994] [Béttcher
& Dressler 1994]
existence of Faults are annotated by their | dk Probabilities of &ults focus | [de Kleer &
probabilities probability: the search process. Williams, 1987]
[Struss, 1992]
[Bottcher &
Dressler1994]
fault probabilities are | Each fult appears cd & dk | Itis used in computing [de Kleer &
independent independently from other probabilities for ypotheses. | Williams, 1989]
possible &ults.

3.3 Assumptions in System-Ewir onment Interaction

Until now, we have sketched a diagnostic problem solver working in batch mode. In receives
some observables as input and tries to efficiently derive a number of hypotheses that car
explain the fault behaviors. However, this is not a very reaslistic scenario especially in the
case where hypothesisliscrimination becomes necessary. In general, hypothesis

discrimination becomes necessary if the number of hypotheses found, exceeds the desire
number (cf.[Davis & Hamscher, 1988] Additional observations must be provided as the

initial observations were not strong enough to discriminate between existing hypotheses.
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Assumptions for Efficiency
— single or N-fault
—— minimality

—— ingnorance of abnormal behavior
independence of hypothes
—— monotonocity of hypotheses

limited knowledge of abnormal behavior

— search control knowledge
existence of a hierarchically layered device model
existence of a hierarchically layered behavioral model
—— existence of probabilities of hypotheses

|— independence of fault probabilities

Fig.5 Assumptions for Efficiency.

Assumptions related to this activity will be discusses now (see Babkérst, it must be
possible to obtairadditional observationsExamples of more specific versions of this
assumption are: can the device be unfastened, are measuring points reachable, ca
components be replaced easily to test behavior, can new input be provided to the device, etc
Second, assumptions can be made aboututiiey of additional observationsOne can
assume cost information of additional measuremeatsl knowledge about their
discriminatory power (i.e., knowledge about dependencies between hypotheses) to optimise
their selection. GDE uses minimal entropy as a measure to mminimize the expected numbe
of tests (= additional observations). FAULTPAbu-Hanna et al., 1991minimizes the
estimated number of tests based on a variety of balanced global factors. Again, NP-hard
problems arise if one tries to optimise these decisions. Therefore, assumptions concerning
heuristic knowledgéhat guide this process are necessary.

Table 3:Interaction Assumptions in component-oriented diagnosis
(cd = case data, dk = domain knwledge, t = task).

name explanation is about | function some references
Possibility of What are further possible | dk It is necessary to get further [Davis &
additional obsenations. information for lypotheses | Hamscherl988]
obsenations discrimination. [Benjamins,
1993]
Utility of additional | How useful are these dk It necessary for optimal [de Kleer &
obsenations obsenations (information decisions duringypotheses | Williams, 1987]
gain \ersus costs). discrimination. [Davis &
Hamscher1988]
[Benjamins,
1993]
heuristic search This knawledge is used to | dk It necessary for &tiently [de Kleer &
knowledge guide the search process fof making sub-optimal Williams, 1987]
optimal selection of further decisions. [Davis &
obsenations. Hamscher1988]
[Benjamins,
1993]

All these assumptions are necessary to optimise the cooperation of the diagnostic system witl
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its environment. In principle, one could assume that all observations that are possible are
provided to the system before it starts its diagnostic reasoning. However, collecting
observations is often a major cost-determining factor. Therefore, assumptions are introducec
concerning the efficiency of gathering information with minimal costs.

4 ASSUMPTIONSAS GUIDELINES FOR THE KNOWLEDGE
ACQUISITION PR OCESS

Software architectures have received increasing interest by the software engineering
community to enhance the system development process and the level of software reuse (cf
[Garlan and D. Perry, 1995]Shaw & Garlan, 1996] In this paper, we have presented an
architecture for describing KBSs. We showed the essential role assumptions play in this
architecture to ensure that the different parts of a KBS specification stand in proper
relationships to each other and to ensure the adequate relationship of the overall specificatiol
with its environment. We expect that dealing with these assumptions will become the
backbone of the knowledge engineering process.

In general, one can distinguish three different activities in dealing with assumptions

resembling the different reasoning styles of deduction, abduction, and induction: validation

and verification of assumptions, searching and constructing assumptions, and constructing
knowledge to fulfil assumptions.

4.1 Validation and Verification of Assumptions

Verification and validation of assumptions is an important part of developing correct
reasoning systems. [Fensel & Schonegge, 1997hje adapted the Karlsruhe Interactive
Verifier (KIV) [Reif, 1995] for verifying architectural specifications of KBSs. The KIV
system is an advanced tool for the construction of provably correct software. It supports the
entire design process starting from formal specifications and ending with verified code. An
essential part of KIV is a tactical theorem prover that interactively supports the verification of
first-order specifications with specifications in dynamic logic. Originally designed for the
development of procedural programs, we describgemsel & Schonegge, 1997hpw it

can be used for the purpose of verifying KBSs. The main activity in adapting KIV is to refine
the generic module concept of KIV for the specific conceptual model used to specify KBSs
and to develop a method that enables systematic bokkeeping of assumptions, which are use
to relate the different parts of a specification.

Existing work on verifying KBSs (cfLydiard, 1992] [Plant & Preece, 199p]s focused at
specific representation formalisms (usually production rules and KL-ONE like formalisms)
and prove rather abstract properties of KBSs (so-calednaliey. One the one hand, these
approaches make very strong (meta-)assumptions by assuming a specific representatio
formalisms for describing the KBS. On the other hand, they do not make any (meta-)
assumptions about the architecture (i.e., the general KBS structure) that can be used t
describe a reasoning system. In consequence, most of these approaches are situated ai
different level of generality than our approach [ewell, 1982).
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4.2 Searching and ConstructingAssumptions

Verifying assumptions requires that one is aware of these assumptions. This raises the nature
guestion of how one gets aware of assumptions. Most commonly, an assumption is noticed ir
case it is no longer valid and causes a system error. Clearly, this is a very dangerous anu
costly method. IfFensel & Schonegge, 1997#fensel & Schbénegge, submittedje show

how assumptions that are necessary to close gaps between different elements of
specification can be found usifgiled attempts to prove their proper relationship. In other
words, we try to prove that a PSM achieves a goal and the assumptions appear as gaps in tt
proof process. The analysis of partial proofs gives hints for the construction of possible
counter examples and for repairing the proof by introducing further assumptions. These
assumptions are thmissing pieces proving the correctness of the specification. Verifying
these specification is therefore a way to detect underlying hidden assumptions. Again, we
could apply thenteractivetheorem prover of KIV as tool support. It returns with open goals
that it cannot prove but their assertion would be sufficient to complete the proof. These open
goals are assumptions that are sufficient (but not necessarily minimal) to establish the correc
relationships. As opposed to verification, here one does not start a proof with the goal to
prove correctness. Instead, one starts an impossible proof and views the proof process as
search and construction process of assumptions. In the following we will refer to this method
for detecting assumptions ewerse verification® We will take an example froffrensel &
Schonegge, 1997dFensel & Schdonegge, submitted]illustrate our point. Let us assume a
task definition that asks for a complete and parsimonious explanation for a set of observables

task complete and paimonious gplanation
goal(x) - completéx) O parsimoniougx)
completéx) - expl(x) = observables
parsimoniougx) - —[X (X' [0 x Oexpl(x) O expl(x’))
end

That is, an explanation has to explain all observables and no smaller explanation may exists
that has the same or larger explanatory power. We further assume a PSM that has th
competence to find complete and local-parsimonious explanations based on a local searcl
algorithm adapted to diagnosis, i.e.:

PSM competenceomplete and local-pammonious gplanation
outpu(x) ~ completéx) [Ilocal-parsimoniougx)
local-parsimonioug$x) - - X,y (y=x\{x} Oexpl(x) O expl(x’))

end

That is, the method finds complete explanations that cannot be further minimized by deleting
one hypothesis from them. Using the interactive theorem prover of KIV, we find the
following assumption that is necessary to close the gap between the goal of the task and th
competence of the PSM:

Monotonic abduction assumption
y O x - expl(y) O expl(x)
end

10 Another method is used in this paper where Section Ade® a surgy of literature on model-based diagnosis where
assumptions are usually discussed as a side aspect of introduced reasorgmgsstrate
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This assumption that we constructed with inverse verification was already mentioned in
Section 3.2 as “monotonicity” assumption. It is used by many approaches for model-based
diagnosis to reduce the computational effort in diagnosis. It assumes that a smaller set o
hypothesis always can explain less observations, i.e. extending a set of hypotheses is .
straightforward way to enrich the explanatory power of the hypotheses set.

Clearly, inverse verification states a typical abductive problem:

“The problem of performing deduction ofwédacts from a set of axioms is well-studied
and understooddn equality important bt far less gplored problem is the destion of
hypotheses to xplain obsered eents. In formal terms this wolves fnding an
assumptionthat, together with some axioms, implies aegi formula.” [Cox &
Pietrzylowski, 1986]

[de Kleer, 1986]describes a truth-maintenance system (ATMS) that could in principle
applied to our problem. Actually most of the approaches to model-based diagnosis we
discussed in section 3 use adaptations of this technique. However, applying this technique
introduces two strong (meta-)assumptions:

» All the assumptions required to selthe @p between the goals of the task and the
competence of the PSM must already benkmand preided to the system.

» The system needs to kmdahe impacts of the assumptions, i.e. theiuigfice on the truth
of the formulas describing competence of the problem-solving method and the goals of
the task.

If this complete knowledge is available establishing the proper set of assumptions boils down
to select a minimal set of assumptions and a bookkeeping mechanism like ATMS can proces:
this task. When such a complete set of assumptions does not exist, finding assumptions i
rather a constructive activity.

Constructive approaches to derive such assumptions (also called weakest precondition:
[Dijkstra, 1975) can be found in program debugging with inductive techniquefS{ahpiro,

1982] [Lloyd, 1987), explanation-based learning (fiflinton et al., 1989][Minton, 1995)

or more general in inductive logic programmiffigliggleton & Buntine, 1988]Muggleton

& De Raedt, 1994] However, these approaches achieve automatization by making strong
(meta-)assumption about the syntactical structure of the representation formalisms of the
components, about the representations of the “error”, and about the way an error can be fixed
Usually, Prolog or Horn logic is the assumed representation formalism and errors or counter-
examples are represented by a set of input-output tuples or a finite set of ground literals.
Modification is done by changing the internal specification of a component. In this scenario,
error detection boils down to backtrack a resolution-based derivation tree for a “wrong*
literal. In extension to the scope of these techniques, we have to aim for new formulas (i.e., ar
assumption may be represented by a complex first-order formula) and our “counter-
examples® are not represented by a set of ground literals but by a complex first-order
specification. Again most of the mentioned approaches do not regard architectural
descriptions of the entire reasoning system. An exception form approaches to explanation-
based learning that use explicit architecture axigviaston, 1995]
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4.3 Constructing Knowledge to Fulfi Assumptions

Up to now, we have discussed assumptions as input of the verification process and as
outcome of the inverse verification process. But what to do if some assumption is proven to
be necessary without being fulfilled? That is, inverse verification has shown they are required
to enable proper relationships between the components, and verification has proven that the
responsible component does not fulfil the assumption. Usually these assumptions formulate
requirements on domain knowledge that is not (yet) available. Therefore, such derived but
violated assumptions define goals for manual and automatic knowledge acquisition
techniques that can make use of these explicit goals. Using such assumptions as goals fc
machine learning, knowledge discovery, and data mining techniques therefore introduces
interesting links to recent work ogoakdriven learning[Ram & Leake, 1995bjand
knowledge discovery approaché®lark, 1996] that reflect the task environment the
knowledge should be used in (siEmngels, 1996][Engels et al., submitted] Two basic
principles are shared with these approaches:

» the use of an architecture that structures problem solving and leafRiay €t al.,
1995)

» the e&plicit notion of goals (or tget concepts) that guide the problem-solving and
learning procesfRam & Leake, 1995a]

Most of the learning effort is viewed to be triggered from knowledge gaps and féitaras

et al.,, 1995] Assumptions are explicit notions of what is required as knowledge by the
reasoner. In that sense they allow the application of learning techniques during the
development and design process of the systems. Instead of manifesting itself as a runtime
error, a knowledge gap and failure is made explicit from the beginning. The notion of goals
and target concepts for selecting and guiding learning techniques enables these techniques -
deal with goals and failures indicated by assumptions, for example:

» complete fault knowledge.Using eplanation-based or conceptual clustering techniques
to generalize cases of misbeltat of the deice that cannot bexplained by the
diagnostic problem soér, can lead to a realistic task dhefion that speciés the cases
that can/cannot be s@u by the problem sodv.

» Existence of input-output description of componentsScientifc discwery techniques
can be used to dee functional representations from observing the wehaof the
components.

» Single-fault assumption.Learning techniques that modify the representation formalism
of the deice can dervie a representation where muklibfts are represented by single
entities.

» Existence of heuristic seash-control knowledge. Explanation-based learning
techniques are designed to learn control rules that shouldvenpystem performance.
Clustering techniques can be used to establish hierarchical structured system description

5 CONCLUSIONS

[Fensel & Groenboom, 1997ijtroduced an architecture for the description of knowledge-
based systems that decomposes its specification into four different parts: a task, specifyinc



25

the reasoning goals of the system; a PSM, specifying its reasoning behavior; a domain mode
that provides the required domain knowledge; and an adapter establishing the proper
relationship between the different parts and enable reusability of the other parts. This
architecture generalizes existing approaches asntiael of expertis@ef CommonKADS
[Schreiber et al., 1994br purpose of reusability of the different elements of the model. This
architecture focuses the attention on the different types of assumptions that have to be mad
to establish a consistent and correct system model. It is essential to know the underlying
assumptions of a reasoning system in order to know when it is applicable. Moreover,
assumptions are good ways to characterise systems and they can be used to guide tt
acquisition process of domain knowledge. They define the type of knowledge and its
properties as they are required by the reasoner. In this paper, we have dealt with three aspec
related to these assumptions:

* We shoved the complementary role assumptions play to restrict the cxitgpdé the
task or the required competence of the domainvenige used as resource for the
reasoning proces¥Ve called this the & of conseration of assumptiongBenjamins et
al., 1996]

* We provided an g&tensve suney on assumptions based oronk on model-based
diagnosisThis suney provides an empirical base of ougament.

» Finally, we sletched the role of assumptions in theelepmentprocessof a reasoning
system.They define obligations for \erification, goals for werse erification, and tayet
concepts for manual and automatic wiexlge construction techniques.

Currently, we apply our ideas to PSMs from the area of design problem délemgel et al.,
1997] planning[Barros et al., 19974nd develop more systematic support in explicating the
context of knowledge components and in adapting them to changed cprdazel &
Schonegge, submitted[This should enable the reuse of knowledge components and
knowledge-based reasoners in heterogeneous environijigemgamins, 1997] [Fensel,
1997a]
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