

1

The Role of Assumptions in Knowledge Engineering

Dieter Fensel

1

 and V. Richard Benjamins

2

1

 University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany, dieter.fensel@aifb.uni-karlsruhe.de

2

 Artifi cial Intelligence Research Institute (IIIA), Spanish Council for Scientific Research (CSIC),
Campus UAB, 08193 Bellaterra, Barcelona, Spain, richard@iiia.csic.es, http://www.iiia.csic.es/~richard

&
Dept. of Social Science Informatics (SWI), University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam,

The Netherlands, richard@swi.psy.uva.nl, http://www.swi.psy.uva.nl/usr/richard/home.html

Abstract.

 Problem-solving methods are means to describe the inference process
of knowledge-based systems. During the last years, a number of these problem-
solving methods have been identified that can be reused for building new
systems. However, problem-solving methods require specific types of domain
knowledge and introduce specific restrictions on the tasks that can be solved by
them. These requirements and restrictions are

assumptions

 that play a key role in
reusing problem-solving methods, in acquiring domain knowledge, and in
defining the problem that can be tackled by the knowledge-based systems. In the
paper, we discuss the different roles, assumptions play in the development
process of knowledge-based systems and provide a survey of assumptions used
by diagnostic problem solving. We show how such assumptions introduce target
and bias for goal-driven machine learning and knowledge discovery techniques.

1 INTRODUCTION

During the last years, Problem-solving methods (PSMs) have become quite successful in
describing the reasoning behavior of knowledge-based systems ([Chandrasekaran, 1986],
[Marcus, 1988], [Puppe, 1993], [Schreiber et al., 1993], [Schreiber et al., 1994], [Eriksson et
al., 1995], [Steels, 1990], [Terpstra et al., 1993], [Angele et al., 1996]). On the one hand,
PSMs refine generic inference strategies and search methods to task and domain-specific
circumstances. On the other hand, they are not designed for one specific application problem.
Instead, they are usable for a family of similar problems: Similar in terms of the goals that
should be achieved and similar in the type of knowledge that is required as resource for the
reasoning process. Libraries of PSMs are described in [Benjamins, 1995], [Breuker & Van de
Velde, 1994], [Chandrasekaran et al., 1992], [Motta & Zdrahal, 1996], and [Puppe, 1993].

One of the first problem-solving methods for knowledge-based systems (KBSs) is

heuristic
classification

 (see Figure 1). [Clancey, 1985] identified it as a generic reasoning pattern of
several expert systems applied to different problems. It consists of three main inference steps:

• a

data abstraction

 step that abstracts concrete values like “body-temperature = 39.2
degree Celsius“ to the value “high fever“;

to appear in

International Journal of Intelligent Systems (IJIS)

, 13(7), 1998.

2

• a

heuristic match

step

that

uses these abstract descriptions to heuristically establish
some possible solution classes.

• a

refinement

 step that should find a final solution by discrimination.

Each of the inference step requires specific knowledge types as resource. A data abstraction
step can only be performed if hierarchical knowledge over data is available, and a refinement
step of solutions can only be done if hierarchical knowledge over solution classes is available.

Describing PSMs by their inference steps, knowledge types, and inference structures that
determine the data and knowledge flow between the inferences, has become a common style
in knowledge engineering. Examples for diagnosis are provided by [Benjamins, 1995] and for
planning by [Barros et al., 1997]. Basically, these descriptions decompose the entire inference
process into more elementary sub steps.

[Van de Velde, 1988] and [Akkermans et al., 1993] proposed the description of the

competence

 of a PSM in extension to their decompositional descriptions. Such competence
descriptions define the goals that can be achieved by a PSM independent from

how

 these
goals are achieved. Thus, such competence descriptions resemble the idea of functional
specifications from software engineering for PSMs. A functional specification of a software
artefact describes

what

 the software system does without referring to the way how it achieves
its functionality [Fensel, 1995c]. Examples of such competence descriptions can be found in
[Fensel & Groenboom, 1997], [Fensel & Schönegge, 1997b], and [Fensel & Schönegge,
submitted]

However, establishing the competence of a PSM requires the definition of a control flow that
defines the execution order of the inference steps of a PSM [Fensel et al., to appear] and a
notion of the functionality that is provided by the domain knowledge. The competence
definition of a PSM like heuristic classification critically depends on the “competence“ of its
hierarchical and heuristic match knowledge. Statements about the absolute or relative
correctness and completeness of the method can only be done in terms of assumptions over
the absolute or relative correctness and completeness of the domain knowledge. These
assumptions are therefore more precise characterizations of the knowledge types and
competence of a PSM. In consequence, current work on PSM pays much more attention to

match

refine

Disease classes

abstract

Patient abstractions

Patient data Diseases

Fig. 1

Heuristic Classification [Clancey, 1985].

Legenda: premise and/or conclusion inference

3

these assumptions ([Benjamins & Aben, 1997], [Fensel, 1995a], [Fensel et al., 1996],
[Wielinga et al., 1995], [Benjamins & Pierret-Golbreich, 1996], [Benjamins et al., 1996],
[Fensel & Benjamins, 1996], [Fensel & Straatman, to appear], [O´Hara & Shadbolt, 1996],
[Motta & Zdrahal, 1996], [Breuker, 1997], [Fensel & Schönegge, submitted]).

In this paper, we will take a closer look at assumptions of PSMs. In Section 2, we introduce a
general framework for specifying KBSs at a conceptual level that takes into account the
important role of assumptions. Also, we sketch the twofold role assumptions can play and
express the relationship between these two roles as the law of conservation of assumptions
(cf. [Benjamins et al., 1996]). In Section 3, we provide an extensive survey on assumptions
used in diagnostic problem solving. This survey provides the empirical base for our argument
and delivers numerous illustrations for our point. In Section 4, we describe the role
assumptions play in knowledge acquisition. We describe methods for assumption
verification, assumption identification, and knowledge acquisition guided by assumptions
and discuss the role that existing verification, machine learning, and knowledge discovery
techniques can play in these processes. Finally, we provide conclusions and future work.

2 THE LAW OF CONSERVATION OF ASSUMPTIONS

Mostly, papers on problem-solving methods focus on the description of reasoning strategies
and discuss their underlying assumptions as a side aspect. We take a complementary point of
view and focus on these underlying assumptions as they play important roles:

• Assumptions are necessary to characterise the precise competence of a problem-solving
method in terms of the tasks that can be solved by it, and in terms of the domain
knowledge that is required by it.

• Assumptions are necessary to enable tractable problem solving and economic system
development of complex problems. First, assumptions reduce the worst-case or average-
case complexity of computation [Fensel & Straatman, to appear]. Second, assumptions
may reduce the costs of the system development process through simplifying the problem
that must be solved by the system [Fensel, 1997b].

• Finally, assumptions have to be made to ensure a proper interaction of the problem solver
with its environment.

In the following, we will first discuss the different elements of a description of a KBS and
second we will sketch their proper relationships and the process of deriving them.

2.1 The Four Elements in Specifying KBSs

In [Fensel & Groenboom, 1997], we provided different aspects of a specification of
knowledge-based system which are related by assumptions (see Figure 2): a

task definition

defines the problem to be solved by the KBS; the

PSM

 defines the reasoning process of the
knowledge-based system; and a

domain model

 describes the domain knowledge of the
knowledge-based system. Each of these three elements is described independently to enable
the reuse of task descriptions in different domains, the reuse of PSMs for different tasks and
domains, and the reuse of domain knowledge for different tasks and PSMs. Therefore, a
fourth element of a specification of a KBS is an

adapter

 that is necessary to adjust the three

4

other (reusable) parts to each other and to the specific application problem.

The

task

definition

 specifies the goals that should be achieved in order to solve a given
problem, which are functionally specified as an input-output relation. A task definition also
defines assumptions about the domain knowledge. Already such a simple task like the
selection of the maximal element of a set of elements requires a preference relation as domain
knowledge. Assumptions are used to define the requirements on such a relation (e.g.
transitivity, symmetry, etc.).

The reasoning of a knowledge-based system can be described by a

problem-solving method

.
A PSM consists of three parts. First, a definition of the functionality defines the

competence

of the PSM independent of its realisation. Second, an

operational description

 defines the
dynamic reasoning process. Such an operational description describes how the competence
can be achieved in terms of the reasoning steps and their dynamic interaction (i.e., the
knowledge and control flow). The third part of a PSM concerns

assumptions

 about the
domain knowledge. Each inference step requires a specific type of domain knowledge with
specific characteristics.

The description of the

domain model

 introduces the domain knowledge as it is required by the
PSM and the task definition. Three elements are needed to define a domain model. First, a
description of properties of the domain knowledge at a meta-level. The

meta-knowledge

characterises properties of the domain knowledge. It is the counterpart of the assumptions on
domain knowledge made by the other parts of a KBS specification: assumptions made about
domain knowledge by these parts, must be stated as properties of the domain knowledge. The
second element of a domain model concerns the

domain knowledge

and

case data

necessary
to define the task in the given application domain, and necessary to carry out the inference
steps of the chosen problem-solving method. The third element is formed by

external

Goals (T

G

)

Assumptions (T

A

)

Task definition

Competence (PSM

C

)

Operational Specification (PSM

O

)

Problem-solving method (PSM)

Assumptions (PSM

A

)

Domain model

Fig. 2

The different elements of a specification of a knowledge-based systems.

Domain knowledge + case data (D

K

)

Meta knowledge (D

M

)

External assumptions (D

A

)

Assumptions (A

A

)

Adapter

Signature mappings (A

M

)

5

assumptions

 that link the domain knowledge with the actual domain. These external
assumptions capture the implicit and explicit assumptions a modeler made while building a
domain model of the real world.

The description of an

adapter

 maps the different terminologies of task definition, PSM, and
domain model onto each other, collects the assumptions of task and PSM and may introduce
further assumptions that have to be made to relate the competence of a PSM with the
functionality as it is introduced by the task definition. Because it relates the three other parts
of a specification together and establishes their relationship in a way that meets the specific
application problem, they can be described independently and selected from libraries. The
consistent combination and adaptation of the three different components to the specific
aspects of the given application (because they should be reusable they need to abstract from
specific aspects of application problems) must be provided by the adapter.

2.2 The Law of Conservation of Assumptions

When establishing the proper relationship between PSM and task, one usually requires

correctness

 and

completeness

 of the PSM relative to the goals of the task:

•

Correctness

 requires that each output that is derived by the PSM also fulfils the goal of
the task:

∀

i,o

 (PSM

A

(

i

)

∧

 PSM

C

(

i,o

)

→

TASK

A

(

i

)

∧

TASK

G

(

i,o

))
simplified:

∀

i,o

 (PSM(

i,o

)

→

TASK(

i,o

))
•

Completeness

 requires that the PSM provides an output for each input that leads to a
fulfi lled goal of the task:

∀

i

(TASK

A

(

i

)

∧

∃

o

1

 TASK

G

(

i,o

1

)

→

 PSM

A

(

i

)

∧

∃

o

2

PSM

C

(

i,o

2

))
simplified:

∀

i

(

∃

o

1

 TASK(

i,o

1

)

→ ∃

o

2

PSM(

i,o

2

))
It is not necessarily the same output because the task may not be a function (i.e., several
output are possible).

However, a perfect match is unrealistic in many cases. In general, most problems tackled with
KBSs are inherently complex and intractable (see e.g. [Bylander, 1991], [Bylander et al.,
1991], and [Nebel, 1996]).

1

 A PSM has to describe not just a realization of the functionality,
but one which takes into account the constraints of the reasoning process and the complexity
of the task. The way PSMs achieve efficient realization of functionality is by making

assumptions

 [Fensel & Straatman, to appear]. These assumptions put restrictions on the
context of the PSM, such as the domain knowledge and the possible inputs of the method or
the precise definition of the goal to be achieved when applying the PSM. Notice that such
assumptions can work in two directions to achieve this result. First, they can restrict the
complexity of the problem, that is, weaken the task definition in such a way that the PSM
competence is sufficient to realize the task. Second, they can strengthen the competence of
the PSM by assuming (extra) domain knowledge.

•

Weakening

: Reducing the desired functionality of the system and reducing therefore the
complexity of the problem by introducing assumptions about the precise task definition.

1.

Exceptions are classification problems which have often known polynomial time complexity (see [Goel et al.,
1987]).

6

An example of this type of change is to no longer require an optimal solution, but only an
acceptable one, or to make the single-fault assumption in model-based diagnosis.

•

Strengthening

: Introducing assumptions about the domain knowledge (or the user of the
system) which reduces the functionality or the complexity of the part of the problem that
is solved by the PSM. In terms of complexity analysis, the domain knowledge or the user
of the system is used as an oracle that solves complex parts of the problem. These
requirements therefore strengthen the functionality of the method.

Both strategies are complementary. Informally:

TASK - Assumption

weakening

 = PSM + Assumption

strengthening

That is, the sum of both types of assumptions may be constant. Decreasing the strength of one
assumptions type can be compensated by increasing the strength of the other type (see Figure
3), i.e.

TASK - PSM =

∆

 = Assumption

weakening

 + Assumption

strengthening

This is called the

law of conservation of assumptions

 in [Benjamins et al., 1996]. More
formally, both types of assumptions appear at different places in the implications that define
the relationship between PSM and task:

•

Adapted Correctness

∀

i,o

 (Assumption

strengthening

∧

 PSM(

i,o

)

→ (¬

Assumption

weakening

∨

TASK(

i,o

)))
•

Adapted Completeness

∀

i

(

∃

o

1

 TASK(

i,o

1

)

∧

Assumption

weakening

→ (¬

Assumption

strengthening

∨

∃

o

2

 PSM(

i,o

2

))

Recalling that an implication is true if the premise is false or if the premise and the conclusion
are true, this twofold impact can be explained easily. Assumptions weaken the implication by
either strengthening the premise or by weakening its conclusion.

2

The first type of assumptions is used to weaken the goal which must be achieved by the PSM
and the second type of assumption is used to improve the effect which can be achieved by the
method by requiring external sources for its reasoning process. Therefore, we will call the
first type teleological assumptions (i.e.,

Assumptions

teleological

,) and the second type
ontological assumptions (i.e.,

Assumptions

ontological

,). Both types of assumptions serve the

2.

A formula

α

is weaker than a formula

β

 iff every model of

β

is also a model of

α

, i.e.

β

 |=

α

 and |=

β

→

α

.

PSM

Goal

Assumption

teleoplogical

Assumption

ontological

Fig. 3

The two effects of assumptions.

1

1

PSM

Goal

Assumption

teleoplogical

Assumption

ontological

2

2

7

same purpose of closing the gap between the PSM and the task goal which should be
achieved by it. On the other hand, both types achieve this through a move in quite the
opposite direction (see Figure 3).

In the second case of Figure 3, the PSM makes less assumptions about available domain
knowledge. This must be compensated by stronger teleological assumptions, i.e. by
decreasing the actual goal which can be achieved by the method. These relationships make it
natural to view the sum of the effects of both types of assumptions as constant. The

role

 of the
two different types of assumptions (i.e., the direction of their influence) remains different.
Ontological assumptions are required to define the functionality of a PSM, i.e. they

extend

 the
effect which can be achieved by the operational specification of a PSM. Teleological
assumptions are required to close the gap between this functionality of a PSM and a given
goal. They have to

weaken

 the goal in cases where the final goal is beyond the scope of the
functionality of the PSM.

Besides their different direction, both types of assumptions have something in common
which leads to the natural question whether they are interchangeable. The composed outcome
of their joined effort is constant. The question arises whether and how the weakening or
strengthening of ontological assumptions can be compensated by strengthening or weakening
the teleological assumptions and vice versa. This question is quite essential for the

applicability

 of a PSM for a given task and domain. The knowledge requirements of a PSM
can be weakened or strengthened according to

• the available domain knowledge,
• the effort which is required to derive and to model further knowledge, and
• the (teleological) assumptions which can be made to reduce the goal which must be

achieved.

Teleological assumptions have to be made if the (ontological) assumptions about available
domain knowledge cannot be satisfied to an extent that would enable the achievement of the
goals as they are originally specified. The applicability problem for PSMs is therefore
essentially a question of the relationships between these two different types of assumptions.
We will illustrate this by an example taken from the area of diagnosis with component
models.

Component-based diagnosis with multiple faults is in the worst case exponential in the
number of components ([Bylander et al., 1991]). Every element of the power-set of the
set of annotated components is a possible hypothesis. If one is not interested in problem-
solving in principle but in practice, further assumptions have to be introduced that either
decrease the worst-case, or at least the average-case behavior. A drastic way to reduce the
complexity of the diagnostic task is achieved by the

single-fault

 or

N-fault

assumption
(SFA) [Davis, 1984], which reduces the complexity to polynomial in the number of
components. If the single-fault assumption holds, the incorrect behavior of the device is
completely explainable by one failing component. Interestingly, the same assumption
can either be interpreted as a requirement on domain knowledge or as a restriction of the
delivered functionality. The SFA defines either strong requirements on the provided
domain knowledge, or significantly restricts the diagnostic problems that can correctly
be handled by the diagnostic system.

8

• If the SFA has to be satisfied by the

domain knowledge

, then each possible fault has
to be represented as a single entity. In principle this causes complexity problems for
the domain knowledge as each fault combination (combination of faulty
components) has to be represented. However, additional domain knowledge could be
used to restrict the exponential growth. [Davis, 1984] discusses an example of a
representation change where a 4-fault case (i.e., 15 different combinations of faults)
is transformed into a single fault. A chip with four ports can cause faults on each
port. When we know that the individual ports never fail, but only the chip as a whole,
a fault on four ports can be represented as one fault of the chip. Even without such a
representation change, we do not necessarily have to represent all possible fault
combinations. We could, for example, exclude all combinations that are not possible
or likely in the specific domain (expert knowledge).

• Instead of formulating the requirement above on the domain knowledge, one can
also weaken the

task definition

 by this assumption. This means that the competence
of the PSM meets the task definition under the assumption that only single faults
occur. That is, only in cases where a single fault occurs, the method works correctly
and complete.

It turns out that the same assumption can either be viewed as a requirement on domain
knowledge or as a restriction of the goal of the task. Therefore, it is not an internal property of
an assumption that decides its status, instead it is the functional role it plays during system
development or problem solving that creates this distinction. Formulating it as a requirement
asks for strong effort in acquiring domain knowledge during system development, and
formulating it as a restriction asks for additional external effort during problem solving if the
given case does not fulfil the restrictions and cannot be handled properly by the limited
system.

3 ASSUMPTIONS IN DIAGNOSTIC PROBLEM SOLVING

The first diagnostic systems built were heuristic systems, in the sense that they contained
compiled knowledge which linked symptoms directly to hypotheses (usually through rules).
With these systems, only foreseen symptoms can be diagnosed, and heuristic knowledge that
links symptoms with possible faults needs to be available. One of the main principles
underlying model-based diagnosis [Davis, 1984] is the use of a domain model (called
Structure, Behavior, Function (SBF) models in [Chandrasekaran, 1991]). Heuristic
knowledge that links symptoms with causes is no longer necessarily in these systems. The
domain model is used for predicting the desired device behavior, which is then compared to
the observed behavior. A discrepancy indicates a symptom. General reasoning techniques
such as constraint satisfaction or truth maintenance can be used to derive diagnoses that
explain the actual behavior of the device using its model. Because the reasoning part is
represented separately from domain knowledge, it can be reused for different domains. This
paradigm of model-based diagnosis gave rise to the development of general approaches to
diagnosis, such as “constraint suspension“ [Davis, 1984], DART [Genesereth, 1984], GDE
[de Kleer & Williams, 1987], and several extensions to GDE (GDE+ [Struss & Dressler,
1989], Sherlock [de Kleer & Williams, 1989]).

9

In this section, we will focus on assumptions underlying these approaches to diagnostic
problem solving. First, we discuss assumptions that are necessary to relate the task definition
of a diagnostic system with its real-world environment (see Section 3.1). That is, assumptions
on the available case data, the required domain knowledge and the problem type. Second, we
discuss assumptions introduced to reduce the complexity of the reasoning process necessary
to execute the diagnostic task (see Section 3.2). Such assumptions are introduced to either
change the worst-case complexity or the average-case behavior of problem solving. Third, we
sketch further assumptions that are related to the appropriate

interaction

 of the problem
solver with its environment (see Section 3.3).

3.1 Assumptions Necessary to Define the Diagnostic Task

In model-based diagnosis (cf. [de Kleer et al., 1992]), the definition of the task of the KBS
requires a

system description

 of the device under consideration and a

set of observations

,
where some indicate

normal

 and other

abnormal

 behavior. The goal of the task is to find a

diagnosis

 that, together with the system description,

explains

 the observations. In the
following, we discuss four different aspects of such a task definition and show the
assumptions related to each of them. The four aspects are: identifying abnormalities,
identifying causes of these abnormalities, defining hypotheses, and defining diagnoses.

3.1.1 Identifying Abnormalities

Identification of abnormal behavior is necessary before a diagnostic process can be started to
find explanations for the abnormalities. This identification task requires three kinds of
knowledge, of which two are related to the type of input, and one to the interpretation of
possible discrepancies (see [Benjamins, 1993]):

•

observations

 of the behavior of the device must be provided to the diagnostic reasoner;
• a

behavioral

description

 of the device must be provided to the diagnostic reasoner;
• knowledge concerning the (

im

)

preciseness

 of the observations and the behavioral
description as well as

comparison knowledge

 (thresholds, etc.) are necessary to decide
whether a discrepancy is significant. Other required knowledge concerns the
interpretation of

missing values

, and whether an observation can have several values (i.e.,
its value type).

Relevant assumptions state that the two types of inputs (i.e., observations amd behavioral
descriptions) need to be

reliable

. Otherwise, the discrepancy could be explained by a
measuring fault or a modelling fault. In other words, these assumptions guarantee that if a
prediction yields a different behavior than the observed behavior of the artefact, then the
artefact has a defect [Davis & Hamscher, 1988].

These assumptions are also necessary for the meta-level decision whether a diagnosis
problem is given at all (i.e., whether there is an abnormality in system behavior). This
decision relies on a further assumption: the

no design error assumption

 [Davis, 1984] which
says that if no fault occurs, then the device must be able to achieve the desired behavior. In
other words, the discrepancy must be the result of a faulty situation where some parts of the
system are defect. It cannot be the result of a situation where the system works correctly, but
cannot achieve the desired functionality because it is not designed for this. If this assumption
does not hold, one has a design problem and not a diagnostic problem.

10

3.1.2 Identifying Causes

Another purpose of the system description is the identification of possible causes of faulty
behavior. This cause-identification knowledge must be

reliable

 [Davis & Hamscher, 1988],
or, in other words, the knowledge used in model-based diagnosis is assumed to be a correct
and complete description of the artefact. Correct and complete in the sense, that it enables the
derivation of correct and complete diagnoses if discrepancies appear.

3

 In accordance with
different types of device models and diagnostic methods, these assumptions wear different
clothes. In the following, we restrict our attention to component-oriented device models that
describe a device in terms of components, their behaviors (a functional description), and their
connections.

4

 The set of all possible hypotheses is the power-set of the set of annotated
components

{ (c

1

), (c

1

), ..., (

c

n

)},

where the annotation

mode

ji

(

c

j

) describes that the

j

-th component is in mode

i

. [Davis, 1984]
has pointed out that one should be aware of the underlying assumptions for such a diagnostic
approach and listed a number of them.

First, the

localised failure of function

 assumption: the device must be decomposable in well-
defined and localised entities (i.e., components) that can be treated as causes of faulty
behavior. Second, these

components have a functional description

that provides the (correct)
output for their possible inputs. If this functional description is local, that is, it does not refer
to the functioning of the whole device, the

no function in structure

 assumption [de Kleer &
Brown, 1984] is satisfied. Several diagnostic methods also expect the reverse of the
functional descriptions, thus, rules that

derive the expected input from the provided output

called “inference rules“ in [Davis, 1984]. If only correct functional descriptions are available,
fault behavior is defined as any other behavior than the correct one. Fault behavior of
components can be constrained by including fault models, that is,

functional descriptions of
the components in case they are broken

 (cf. [de Kleer & Williams, 1989], [Struss & Dressler,
1989]). If one assumes that these functional descriptions are complete (the

complete fault
knowledge

 assumption), then components can be considered innocent if none of their fault
descriptions is consistent with the observed faulty behavior. A result of using fault models is
that all kinds of non-specified

—

and physically impossible

—

behaviors of a component are
excluded as diagnosis. For example, using fault models, it becomes impossible to conclude
that the fault

“one of two light bulbs is not working“

 is explained by a defect battery that does
not provide power and a defect lamp that lights without electricity (cf. [Struss & Dressler,
1989]).

Further assumptions that are related to the functional descriptions of components are the

no
fault masking

 and the

non intermittency

 assumption. The former assumption states that the
defect of an individual or composite component, or of the entire device must be visible by
changed outputs (cf. [Davis & Hamscher, 1988], [Raiman, 1992]). According to the latter
assumption, a component that gets identical inputs at different points of time, must produce

3.

A typical problem of diagnosis without knowledge about fault models (i.e., incomplete knowledge) is that the reasoner
provides, in addition to the right diagnoses, also wrong diagnoses. The result is complete but not correct because the
provided domain knowledge is not complete.

4.

It is a critical modelling decision what to view as a component and which types of interactions are represented (cf. [Davis,
1984]). Several points of view are possible to decide what is regarded as being a component. Different levels of physical
representations result in different entities; the independent entities that are used in the manufacturing process of the artefact
could be used as components; or functional unities of the artefact could be seen as components.

mode

11

mode

12

mode

nm

n

11

identical outputs. In other words, the output is a function of the input (cf. [Raiman et al.,
1991]). [Raiman et al., 1991] argue that intermittency results from incomplete input
specifications of components, but that it is impossible to get rid of it (it is impossible to
represent all required additional inputs in a complete way).

A third assumption underlying many diagnostic approaches is the

no faults in structure

assumption (cf. [Davis & Hamscher, 1988]) that manifests itself in different variants
according to the particular domain. The assumption states that the interactions of the
components are correctly modelled and that they are complete. This assumption gives rise to
three different classes of more specific assumptions. First, the

no broken interaction

assumption states that connections between the components work correctly (e.g. no wires
between components are broken).

5

 If this is too strong, the assumption can be weakened by
representing the connections themselves as components too. Second, the

no unexpected
directions

 assumption (or existence of a causal pathway assumption, [Davis, 1984]) states
that the directions of the interactions are correctly modelled and are complete. For example, a
light bulb gets power from a battery and there is no interaction in the opposite direction. The

no hidden interactions

assumption (cf. [Böttcher, 1996]) assumes that there are no non-
represented interactions (i.e., closed-world assumptions on connections). A bridge fault
[Davis, 1984] is an example of a violation of this assumption in the electronic domain.
Electronic devices whose components unintendedly interact through heat exchange, is
another example [Böttcher, 1996]. In the worst case, all potential unintended interaction paths
between components are represented [Preist & Welhalm, 1990]. The no hidden interactions
assumption is critical since most models (like design models of the device) describe correctly
working devices and unexpected interactions are therefore precisely not mentioned. A
refinement of this assumptions is that there are no

assembly errors

 (i.e., every individual
component works correctly but they have been wired up incorrectly).

3.1.3 Defining Hypotheses

In addition to knowledge that is required to identify a discrepancy and knowledge that
provides hypotheses used to explain these discrepancies, one requires further knowledge to
decide which type of explanation is required. [Console & Torasso, 1992] distinguish two
types of explanations: weak explanations, that are

consistent

 with the observations (no
contradiction can be derived from the union of the device model, the observations, and the
hypothesis), and strong explanations, that

imply

 the observations (the observations can be
derived from the device model and the hypothesis). Both types of explanation can be
combined by dividing observations in two classes: observations that need to be explained by
deriving them from a hypothesis, and observations that need only be consistent with the
hypothesis. In this case one requires

knowledge that allows to divide the set of observations

.
The decision which type of explanation to use, can only be made based on assumptions about
the environment in which the KBS is used.

3.1.4 Defining Diagnoses

Having established observations, hypotheses and an explanatory relation that relates
hypotheses with observations, one must establish the notion of

diagnosis

. Not each

5.

It is possible to represent the interactions between components as possible hypotheses but this leads to new problems (see
3.1.5).

12

hypothesis that correctly explains all observations needs to be a desired diagnosis. One could
accept only

parsimonious

 hypotheses as

diagnoses

 (cf. [Bylander et al., 1991]). A hypothesis
or explanation H is parsimonious if

H

 is an explanation and there exists no other hypothesis

H’

 that also is an explanation and

H’

 <

H

. One has to make assumptions about the desired
diagnosis (cf. [McIlraith, 1994]) in order to define the partial ordering (<) on hypotheses. For
example, whether the diagnostic task is concerned with finding all components that are
necessarily fault to explain the system behavior, or whether it is concerned with finding all
components that are necessarily correct to explain the system behavior. In the first case, we
aim at economy in repair, whereas in safety critical applications (e.g., nuclear power plants)
one should obviously choose for the second case.

As shown by [McIlraith, 1994], the assumptions about the type of explanation relation (i.e.,
consistency versus derivability) and about the explanations (i.e., definition of parsimony)
make also strong commitments on the domain knowledge (the device model) that is used to
describe the system. If we ask for a consistent explanation with minimal sets of faulty
components (i.e.,

H

1

 <

H

2

 if

H

1

 assumes less components as being fault than

H

2

), we need
knowledge that constrains the normal behavior of components. Otherwise we would simply
derive all components as correct. If we ask for a consistent explanation with minimal sets of
correct components (i.e.,

H

1

 <

H

2

 if

H

1

 assumes less components as being correct than

H

2

),
we need knowledge that constrains the abnormal behavior of components. Otherwise we
would simply derive all components as faulty.

The definition of parsimonious hypotheses introduces a

preference

 on hypotheses. This could
be extended by defining further preferences on diagnoses to select one optimal one (e.g., by
introducing assumptions related to the probability of faults). Again, knowledge about
preferences must be available to define a preference function and a corresponding ordering.

3.1.5 Summary

Figure 4 summarises the assumptions that are discussed above and groups them according to
their purpose. All these assumptions are necessary to relate the definition of the functionality
of the diagnostic system with the diagnostic problem (i.e., the task) to be solved and with the
domain knowledge that is required to define the task. Table 1 provides an explanation of the
assumptions along with the role they play (function), the domain they are about (case data,
domain knowledge or task), and some references where they are discussed in more detail.

Table 1: Effect Assumptions in component-oriented diagnosis
(cd = case data, dk = domain knowledge, t = task).

name explanation is about function some references

existence of
observations

observations must be provided
to the diagnostic system

cd It is necessary for detecting
discrepancies.

[Benjamins,
1993]

reliability of
observations

The provided observations
must be reliable.

cd It is necessary for assuming
that the discrepancy must be
explained by a diagnosis.

[Benjamins,
1993], [Davis &
Hamscher, 1988]

existence of a
behavioral
description

The desired system behavior
must be known to the
diagnostic reasoner.

dk It is necessary for detecting
discrepancies.

[Benjamins,
1993]

reliability of
behavioral
description

The description of the system
must be reliable.

dk It is necessary for assuming
that the discrepancy must be
explained by a diagnosis.

[Benjamins,
1993], [Davis &
Hamscher, 1988]

13

existence of
knowledge to identify
discrepances

Knowledge is required to
compare the observations with
the behavioral description.

dk It is necessary for interpreting
discrepancies.

[Benjamins,
1993]

reliability of the
discrepancy
identification
knowledge

The knowledge used to detect
discrepancies must be reliable.

dk It is necessary for interpreting
discrepancies correctly.

[Benjamins,
1993]

no design error The discrepancy between
expected and actual behavior
does not result from the
(incorrect) design of the device.

t The behavioral discrepancy is a
fault and not just an
impossibility.

[Davis, 1984]

existence of a set of
components

The device can be decomposed
into a set of components.

dk The entire device can be
decomposed into smaller units
that constitute the device.

[Davis, 1984],
[Davis &
Hamscher, 1988]

localized failure of
function, no function
in structure

Faulty components can be
identified as causes.

dk The reasons for faulty behavior
do not have to be constructed
but can be selected from a finite
set.

[Davis, 1984],
[de Kleer &
Brown, 1984]

existence of a set of
annotations (i.e., of
component modes)

Components could have several
behavioral modes that need to
be provided.

dk The diagnostic reasoner can
select from the behavioral
modes provided for each
component.

[Struss &
Dressler, 1989],
[de Kleer et al.,
1992]

completeness of the
set of annotations =
complete fault
knowledge

All possible modes of the
components are known.

dk It is used to infer the mode of a
component if all other
behaviors do not (even not
partially) explain the fault.

[Struss &
Dressler, 1989],
[de Kleer et al.,
1992]

existence of input-
output descriptions of
the components

This knowledge defines the
input-output behavior of the
components.

dk The behavioral description of
the components is required to
detect their faulty behavior and
to derive the overall behavior of
the complete device.

[de Kleer &
Williams, 1987],
[Davis &
Hamscher, 1988]

existence of output-
input descriptions of
the components

This knowledge defines the
output-input relation of the
components.

dk This knowledge can be used to
derive additional discrepancies.

[Davis, 1984],
[Raiman, 1989]

existence of
functional
descriptions of faulty
behavior of
components

This knowledge defines the
input-output behavior of the
components in case they are
broken.

dk The behavioral description of
the components is required to
identify different possible faults
of a component.

[de Kleer &
Williams, 1987],
[Struss &
Dressler, 1989]

complete behavioral
descriptions
(complete fault
models)

All possible behaviors of a
component are modelled by its
functional description.

dk It is used to completely
constrain the possible behavior
of a component.

[de Kleer &
Williams, 1987],
[Struss &
Dressler, 1989]

no fault masking A fault of a component is
visible in its behavior and in the
behavior of the entire device.

cd & dk It is necessary for detecting
faulty components.

[Davis, 1984],
[Davis &
Hamscher, 1988],
[Raiman, 1992]

non intermittency The output of a component is a
function of the input (e.g., the
behavior does not change over
time).

cd It is necessary for interpreting
the discrepancy between an
observation and an output of a
behavioral description of a
component.

[Davis, 1984],
[Raiman et al.,
1991]

Table 1: Effect Assumptions in component-oriented diagnosis
(cd = case data, dk = domain knowledge, t = task).

name explanation is about function some references

14

All these assumptions are necessary to relate a model of the device with the actual device
under concern. “There is no such thing as an assumption-free representation. Every model,
every representation contains simplifying assumptions“ [Davis & Hamscher, 1988]. If the
assumptions are too strong, one could consider weakening them.

6

 However, this raises

existence of a model
of the component
interactions

It assumes that the possible
interactions between
components are known to the
reasoner.

dk This model is required to derive
the overall behavior of the
system and the local inputs of
components from the local
outputs of the components.

[Davis, 1984],
[Davis &
Hamscher, 1988]

no fault in structure
assumption

Faulty components are the only
causes.

dk Only components need to be
treated as possible causes for
the faulty behavior.

[Davis, 1984],
[Davis &
Hamscher, 1988]

no broken
interactions

The interactions work properly,
i.e., the connections work
properly.

dk Only components need to be
treated as possible causes for
the faulty behavior and the
interaction model describes the
real interactions.

[Davis, 1984],
[Davis &
Hamscher, 1988]

no unexpected
direction

The direction of the interaction
is as represented.

dk Only components need to be
treated as possible causes for
the faulty behavior and the
interaction model describes the
real interactions.

[Davis, 1984]

no hidden
interactions (closed
world assumption)

There are no interactions that
are not represented in the
model.

dk Only components need to be
treated as possible causes for
the faulty behavior and the
interaction model describes the
real interactions.

[Davis, 1984],
[Böttcher, 1996]

no assembly error The components are not wired
incorrectly.

dk Only components need to be
treated as possible causes for
the faulty behavior and the
interaction model describes the
real interactions.

[Davis &
Hamscher, 1988],
[Böttcher, 1996]

type of explanation
relation (type of
hypotheses)

Need an observation be
consistent with the hypothesis
or must it be derivable from it.

dk & t The problem solving is either
constraints satisfaction or
abductive inference.

[Console &
Torasso, 1992],
[de Kleer et al.,
1992], [ten Teije
& van Harmelen,
1996]

classification of
observations

It introduces an distinction
between observations that
describes normal and abnormal
behavior.

dk In abductive inference only the
abnormal behavior must be
explained.

[Console &
Torasso, 1992]

type of explanation
(type of diagnosis)

Should the set of fault
components contain all
components that need to be
fault or that could be fault.

dk & t The diagnosis is used for an
economic repair process versus
it is used for safety-critical
monitoring.

[McIlraith, 1994]

preference
knowledge on
diagnoses

It defines preferences between
diagnoses.

dk Necessary for selecting the
diagnoses with high
preferences.

[de Kleer &
Williams, 1987],
[Davis &
Hamscher, 1988]

Table 1: Effect Assumptions in component-oriented diagnosis
(cd = case data, dk = domain knowledge, t = task).

name explanation is about function some references

15

another problem in model-based diagnosis, namely its

high complexity or intractability

. This
will be discussed in the following section.

6.

For example, they can be weakened by representing all desired interactions as components (e.g., wires) that could fail; by
representing additional possibilities of interactions (e.g., electronical devices can interact via heat exchange) [Böttcher,
1996]; by representing all potential unintended interaction paths between components [Preist & Welhalm, 1990]; by
representing additional inputs to get rid of intermittency [Raiman et al., 1991]. Each of these weakenings significantly
increases the computational complexity of the problem-solving process.

Assumptions for Effect

identifying defining diagnosesdefining hypothesesidentifying causes

existence
observations

reliability

existence
behavioral description

reliability

existence

discrepancy i

reliability

no design error

set of devices

cause identification
knowledge

localized
failure of
 function

set of annotations
existence
correct & complete

functional description
existence
correct

no fault
masking

complete
non
intermittency

description of the interactions of components
existence

correct
no broken
interactions

complete
no unexpected
directions

no fault in structure

abnormalities
consistency

classification

derivability

Fig. 4

Assumptions for Effect.

of observations

order for
parsimonious
preferences

fault
probabilities

...

no hidden
interactions

no assembly
error

Assumptions forAssumptions forAssumptions forAssumptions for

no heat exchange between electronical devices

no function in
structure

complete fault

fault behaviors

models

output-input relation

dentification k
nowledge

16

3.2 Assumptions Necessary to Define an Efficient Problem Solver

Besides the assumptions that are necessary to define the diagnostic task, further assumptions
are necessary because of the complexity of model-based diagnosis. Component-based
diagnosis is in the worst case exponential in the number of annotated components ([Bylander
et al., 1991]). Every element of the power-set of the set of annotated components is a possible
hypothesis. As we are not interested in problem-solving in principle but in practice, further
assumptions have to be introduced that either decrease the worst-case, or at least the average-
case behavior.

3.2.1 Reducing the Worst-Case Complexity: The Single-Fault Assumption

A drastic way to reduce the complexity of the diagnostic task is achieved by the

single-fault

or

N-fault

assumption [Davis, 1984], which reduces the complexity to polynomial in the
number of components. If the single-fault assumption holds, the incorrect behavior of the
device is completely explainable by one failing component. As already mentioned in section
2.2, this assumption defines either strong requirements on the provided domain knowledge,
or significantly restricts the diagnostic problems that can correctly be handled by the
diagnostic system. In the first case, each possible fault has to be represented as a single entity.
In the second case, the methods works only in cases where a single fault occurs.

3.2.2 Reducing the Average-Case behavior: The Minimality Assumption of GDE

As the single-fault assumption might be too strong an assumption for several applications,
either as a requirement on the domain knowledge or as a restriction on the task, [Reiter, 1987]
and [de Kleer & Williams, 1987] provide approaches able to deal with multiple faults.
However, this re-introduces the complexity problems of MBD. To deal with this problem,
GDE [de Kleer & Williams, 1987] exploits the

minimality assumption

, which reduces, in
practical cases, the exponential worst case behavior to a complexity that grows with the
square of the number of components. In GDE, this assumptions helps reducing the
complexity in two ways. First, a conflict is a set of components that cannot work correctly
given the provided domain knowledge and the observed behavior. Under the minimality
assumption, each super-set of a conflict is also a conflict and all conflicts can be represented
by minimal conflicts. Second, a hypothesis contains at least one component of each conflict.
Every super-set of such a hypothesis is again a hypothesis. Therefore, diagnoses can be
represented by minimal diagnoses. The minimality assumption requires that diagnoses are
independent or monotonic (see [Bylander et al., 1991]): a diagnosis that assumes more
components as being faulty, explains more observations.

A drastic way to ensure that the minimality assumption holds, is to neglect any knowledge
about the behavior of faulty components. Thus, any behavior that is not correct is considered
as fault. A disadvantage of this is that physical rules may be violated (i.e., existing knowledge
about faulty behavior). We already mentioned the example provided in [Struss & Dressler,
1989], where a fault (one of two bulbs does not light) is explained by a broken battery that
does not provide power and a broken bulb that lights without power. Knowledge about how
components behave when they are faulty (called fault models) could be used to constrain the
set of diagnoses derived by the system. On the other hand, it increases the complexity of the
task. If for one component

m

 possible fault behaviors are provided, this leads to

m

+1 possible
states instead of two (correct and fault). The maximum number of candidates increases from

17

2

n

 to (

m

+1)

n

.

A similar extension of GDE that includes fault models, is the Sherlock system (cf. [de Kleer
& Williams, 1989]). With fault models, it is no longer guaranteed that every super-set of the
faulty components that constitute the diagnosis, is also a diagnosis, and therefore the
minimality assumption as such cannot be exploited. In Sherlock, a diagnosis does not only
contain fault components (and implicitly assumes that all other, not mentioned, components
are correct), but it contains a set of components assumed to work correctly and a set of
components assumed to be fault. A conflict is now a set of some correct and fault components
that is inconsistent with the provided domain knowledge and the observations. In order to
accommodate to this situation, [de Kleer et al., 1992] extend the concept of minimal
diagnoses to kernel diagnoses and characterise the conditions under which the minimality
assumption still holds. The kernel diagnoses are given by the prime implicants of the minimal
conflicts. Moreover, the minimal sets of kernel diagnoses sufficient to cover every diagnosis
correspond to the irredundant sets of prime implicants

7

 of all minimal conflicts. These
extensions cause drastic additional effort, because there can be exponentially more kernel
diagnoses than minimal diagnoses, and finding irredundant sets of prime implicants is NP-
hard. Therefore, [de Kleer et al., 1992] characterise two assumptions under which the kernel
diagnoses are identical to the minimal diagnoses. The kernel diagnoses are identical to the
minimal diagnoses if all conflicts contain only fault components. In this case, there is again
only one irredundant set of minimal diagnoses (the set containing all minimal diagnoses). The
two assumptions that can ensure these properties are the

ignorance of abnormal behavior

assumption and the

limited knowledge of abnormal behavior

 assumption.

The ignorance of abnormal behavior assumption excludes knowledge about faulty behavior
and thus characterises the original situation of GDE. The limited knowledge of abnormal
behavior assumption states that the knowledge of abnormal behavior does not rule out any
diagnosis indicating a set of faulty components, if there exist a valid diagnosis indicating a
subset of them as faulty components, and if the additionat components assumed faulty are not
inconsistent with the observations and the system description.

8

 The latter assumption is a
refinement of the former, that is, the truth of the ignorance of abnormal behavior assumption
implies the truth of the limited knowledge of abnormal behavior assumption.

A similar type of assumption is used by [Bylander et al., 1991] to characterise different
complexity classes of component-based diagnosis. In general, finding one or all diagnoses is
intractable. The

independent

 and

monotonic

 assumption, which have the same effect as the
limited knowledge of abnormal behavior assumption, require that each super-set of a
diagnosis indicating a set of faulty components is also a diagnosis.

9

 In this case, the worst-
case complexity of finding one minimal diagnosis grows polynomially with the square of the
number of components. However, the task of finding all minimal diagnoses is still NP-hard in
the number of components. This corresponds to the fact that the minimality assumption of
GDE (i.e., the ignorance of abnormal behavior and limited knowledge of abnormal behavior
assumptions), that searches for all diagnoses, does not change the worst-case but only the

7.

See [McCluskey, 1956]. An implicant is a conjunction of positive and negative literals. Without fault models, minimal
hypotheses contain only negative literals (

¬

ok(c

i

)). In the case of fault models we have positive and negative literals (ok(c

i

)
and

¬

ok(c

i

)) in the hypotheses. Therefore, minimality cannot be simply defined by set inclusion of the literals of a
conjunction.

8.

[McIlraith, 1994] generalizes these assumptions for the dual case of diagnosing a minimal set of components proven to be
correct and applies these assumptions for characterizing minimal abductive diagnoses.

9.

More precisely, the explanatory power of a hypothesis increases monotonously by adding fault or correct components.

18

average-case behavior of the diagnostic reasoner.

3.2.3 Search Guidance

The complexity of component-based diagnosis (especially when working with fault models)
requires further assumptions that enable efficient reasoning for practical cases (cf. [Struss,
1992], [Böttcher & Dressler, 1994]). Again, these assumptions do not change the worst case
complexity but should reduce the necessary effort in practical cases. A well-known notion to
increase efficiency is a reasoning focus. Defining a focus for the reasoning process can be
achieved by exploiting hierarchies or probability information. The

hierarchically-layered
device-model

 assumption assumes the existence of hierarchically layered models that allow
step wise refinement of diagnosis to reduce the complexity of the diagnostic process (cf. the
complexity analysis of hierarchical structures of [Goel et al., 1987]). The large number of
components at the lowest level of refinement is replaced by a small number of components at
a higher level. Only the relevant parts of the model are refined during the problem-solving
process. The

hierarchically-layered behavioral-model

 assumption assumes the existence of
more abstract descriptions of the behavior that can improve the efficiency because reasoning
can be performed at a more coarse grained, and thus simpler, level (cf. [Abu-Hanna, 1994]).
The

existence of probabilities

 assumption assumes knowledge about the probability of faults
that can be used to guide the search process for diagnoses by focusing on faults with high
probabilities. Usually, these probabilities introduce new assumptions (e.g., the

components
fail independently

 assumption [de Kleer & Williams, 1989]).

All these knowledge types and their related assumptions rely on further assumptions
concerning the utility of this search control knowledge. For example, the hierarchically-
layered device model improves only the search process when the faults are not distributed in
a way that enforces the problem solver to expand each abstract component descriptions to
their lowest levels. It significantly improves the search process if the problem solver need to
refine only one abstract component description at each level.

3.2.4 Summary

Figure 5 summarises the assumptions and groups them according to their purpose. All these
assumptions are introduced to reduce the computational effort required to solve the problem.
Table 2 provides an explanation of the assumptions along with the role they play (function),
the domain they are about (case data, domain knowledge or task), and some references where
they are discussed in more detail.

Table 2: Efficiency Assumptions in component-oriented diagnosis
(cd = case data, dk = domain knowledge, t = task).

name explanation is about function some references

single fault (SFA),

N

-fault
There is one or there are at
most

N

 faults.
dk or t It polynomializes the worst-

case complexity for finding
one or all diagnoses.

[Davis, 1984]

19

3.3 Assumptions in System-Envir onment Interaction

Until now, we have sketched a diagnostic problem solver working in batch mode. In receives
some observables as input and tries to efficiently derive a number of hypotheses that can
explain the fault behaviors. However, this is not a very reaslistic scenario especially in the
case where hypothesis

discrimination

 becomes necessary. In general, hypothesis
discrimination becomes necessary if the number of hypotheses found, exceeds the desired
number (cf. [Davis & Hamscher, 1988]). Additional observations must be provided as the
initial observations were not strong enough to discriminate between existing hypotheses.

minimality Sets of hypotheses can be
represented by one minimal
hypothesis.

dk It polynomializes the
average-case behavior for
finding all diagnoses.

[Reiter, 1987],
[de Kleer &
Williams, 1987],
[Bylander et al.,
1991], [de Kleer
et al., 1992]

ignorance of abnormal
behavior

No knowledge that constrains
possible faulty behavior is
provided.

dk It polynomializes the
average-case behavior for
finding all diagnoses.

[de Kleer &
Williams, 1987],
[de Kleer et al.,
1992]

independency The explanatory power of a
diagnosis is the union of the
explanatory power of its
elements.

dk It polynomializes the worst-
case complexity for finding
one diagnoses.

[Bylander et al.,
1991]

monotonicity The explanatory power of a
diagnosis increases
monotonously with its size.

dk It polynomializes the worst-
case complexity for finding
one diagnoses.

[Bylander et al.,
1991]

limited knowledge of
abnormal behavior

Valid diagnoses do not become
invalid by adding further
correct or fault components to
it.

dk It polynomializes the
average-case behavior for
finding all diagnoses.

[de Kleer et al.,
1992]

existence of search
control knowledge

This knowledge is used to
guide the search process for
diagnoses.

dk It improves the average-case
behavior for finding all
diagnoses.

[Struss, 1992],
[Böttcher &
Dressler, 1994]

existence of a
hierarchically-layered
device-model

The device model is
hierarchically structured.

dk The hierarchical structure of
the device focuses the search
process.

[Goel et al.,
1987], [Struss,
1992], [Böttcher
& Dressler, 1994]

existence of a
hierarchically-layered
behavioral-model

The behavioral description of
the system is hierarchically
structured.

dk Abstract descriptions of the
behavior should reduce the
search effort.

[Struss, 1992],
[Abu-Hanna,
1994], [Böttcher
& Dressler, 1994]

existence of
probabilities

Faults are annotated by their
probability.

dk Probabilities of faults focus
the search process.

[de Kleer &
Williams, 1987],
[Struss, 1992],
[Böttcher &
Dressler, 1994]

fault probabilities are
independent

Each fault appears
independently from other
possible faults.

cd & dk It is used in computing
probabilities for hypotheses.

[de Kleer &
Williams, 1989]

Table 2: Efficiency Assumptions in component-oriented diagnosis
(cd = case data, dk = domain knowledge, t = task).

name explanation is about function some references

20

Assumptions related to this activity will be discusses now (see Table 3). First, it must be
possible to obtain

additional observations

. Examples of more specific versions of this
assumption are: can the device be unfastened, are measuring points reachable, can
components be replaced easily to test behavior, can new input be provided to the device, etc.
Second, assumptions can be made about the

utility of additional observations

. One can
assume cost information of additional measurements and knowledge about their
discriminatory power (i.e., knowledge about dependencies between hypotheses) to optimise
their selection. GDE uses minimal entropy as a measure to mminimize the expected number
of tests (= additional observations). FAULTY [Abu-Hanna et al., 1991] minimizes the
estimated number of tests based on a variety of balanced global factors. Again, NP-hard
problems arise if one tries to optimise these decisions. Therefore, assumptions concerning

heuristic knowledge

 that guide this process are necessary.

All these assumptions are necessary to optimise the cooperation of the diagnostic system with

Table 3: Interaction Assumptions in component-oriented diagnosis
(cd = case data, dk = domain knowledge, t = task).

name explanation is about function some references

Possibility of
additional
observations

What are further possible
observations.

dk It is necessary to get further
information for hypotheses
discrimination.

[Davis &
Hamscher, 1988],
[Benjamins,
1993]

Utility of additional
observations

How useful are these
observations (information
gain versus costs).

dk It necessary for optimal
decisions during hypotheses
discrimination.

[de Kleer &
Williams, 1987],
[Davis &
Hamscher, 1988],
[Benjamins,
1993]

heuristic search
knowledge

This knowledge is used to
guide the search process for
optimal selection of further
observations.

dk It necessary for efficiently
making sub-optimal
decisions.

[de Kleer &
Williams, 1987],
[Davis &
Hamscher, 1988],
[Benjamins,
1993]

Assumptions for Efficiency

minimality

single or N-fault

ingnorance of abnormal behavior
independence of hypothes

search control knowledge
existence of a hierarchically layered device model
existence of a hierarchically layered behavioral model

independence of fault probabilities

Fig. 5

Assumptions for Efficiency.

monotonocity of hypotheses

limited knowledge of abnormal behavior

existence of probabilities of hypotheses

21

its environment. In principle, one could assume that all observations that are possible are
provided to the system before it starts its diagnostic reasoning. However, collecting
observations is often a major cost-determining factor. Therefore, assumptions are introduced
concerning the efficiency of gathering information with minimal costs.

4 ASSUMPTIONS AS GUIDELINES FOR THE KNO WLEDGE
ACQUISITION PR OCESS

Software architectures have received increasing interest by the software engineering
community to enhance the system development process and the level of software reuse (cf.
[Garlan and D. Perry, 1995], [Shaw & Garlan, 1996]). In this paper, we have presented an
architecture for describing KBSs. We showed the essential role assumptions play in this
architecture to ensure that the different parts of a KBS specification stand in proper
relationships to each other and to ensure the adequate relationship of the overall specification
with its environment. We expect that dealing with these assumptions will become the
backbone of the knowledge engineering process.

In general, one can distinguish three different activities in dealing with assumptions
resembling the different reasoning styles of deduction, abduction, and induction: validation
and verification of assumptions, searching and constructing assumptions, and constructing
knowledge to fulfil assumptions.

4.1 Validation and Verification of Assumptions

Verification and validation of assumptions is an important part of developing correct
reasoning systems. In [Fensel & Schönegge, 1997b], we adapted the Karlsruhe Interactive
Verifier (KIV) [Reif, 1995] for verifying architectural specifications of KBSs. The KIV
system is an advanced tool for the construction of provably correct software. It supports the
entire design process starting from formal specifications and ending with verified code. An
essential part of KIV is a tactical theorem prover that interactively supports the verification of
first-order specifications with specifications in dynamic logic. Originally designed for the
development of procedural programs, we describe in [Fensel & Schönegge, 1997b] how it
can be used for the purpose of verifying KBSs. The main activity in adapting KIV is to refine
the generic module concept of KIV for the specific conceptual model used to specify KBSs
and to develop a method that enables systematic bokkeeping of assumptions, which are used
to relate the different parts of a specification.

Existing work on verifying KBSs (cf. [Lydiard, 1992], [Plant & Preece, 1996]) is focused at
specific representation formalisms (usually production rules and KL-ONE like formalisms)
and prove rather abstract properties of KBSs (so-called

anomalies

). One the one hand, these
approaches make very strong (meta-)assumptions by assuming a specific representation
formalisms for describing the KBS. On the other hand, they do not make any (meta-)
assumptions about the architecture (i.e., the general KBS structure) that can be used to
describe a reasoning system. In consequence, most of these approaches are situated at a
different level of generality than our approach (cf. [Newell, 1982]).

22

4.2 Searching and Constructing Assumptions

Verifying assumptions requires that one is aware of these assumptions. This raises the natural
question of how one gets aware of assumptions. Most commonly, an assumption is noticed in
case it is no longer valid and causes a system error. Clearly, this is a very dangerous and
costly method. In [Fensel & Schönegge, 1997a], [Fensel & Schönegge, submitted], we show
how assumptions that are necessary to close gaps between different elements of a
specification can be found using

failed

 attempts to prove their proper relationship. In other
words, we try to prove that a PSM achieves a goal and the assumptions appear as gaps in the
proof process. The analysis of partial proofs gives hints for the construction of possible
counter examples and for repairing the proof by introducing further assumptions. These
assumptions are the

missing pieces

 in proving the correctness of the specification. Verifying
these specification is therefore a way to detect underlying hidden assumptions. Again, we
could apply the

interactive

 theorem prover of KIV as tool support. It returns with open goals
that it cannot prove but their assertion would be sufficient to complete the proof. These open
goals are assumptions that are sufficient (but not necessarily minimal) to establish the correct
relationships. As opposed to verification, here one does not start a proof with the goal to
prove correctness. Instead, one starts an impossible proof and views the proof process as a
search and construction process of assumptions. In the following we will refer to this method
for detecting assumptions as

inverse verification

.

10

 We will take an example from [Fensel &
Schönegge, 1997a], [Fensel & Schönegge, submitted] to illustrate our point. Let us assume a
task definition that asks for a complete and parsimonious explanation for a set of observables:

task

complete and parsimonious explanation
goal

(

x

)

↔

complete

(

x

)

∧

 parsimonious

(

x

)

complete

(

x

)

 ↔

expl

(

x

) =

observables
parsimonious

(

x

)

↔

¬∃

x’

(

x’

⊂

x

∧

expl

(

x

)

⊆

expl

(

x’

))

end

That is, an explanation has to explain all observables and no smaller explanation may exists
that has the same or larger explanatory power. We further assume a PSM that has the
competence to find complete and local-parsimonious explanations based on a local search
algorithm adapted to diagnosis, i.e.:

PSM competence

complete and local-parsimonious explanation
output

(

x

)

↔

complete

(

x

)

∧

 local-parsimonious

(

x

)

local

-

parsimonious

(

x

)

↔

¬ ∃

x’,y

(

y

=

x

 \ {

x´

}

 ∧

expl

(

x

)

⊆

expl

(

x’

))

end

That is, the method finds complete explanations that cannot be further minimized by deleting
one hypothesis from them. Using the interactive theorem prover of KIV, we find the
following assumption that is necessary to close the gap between the goal of the task and the
competence of the PSM:

Monotonic abduction assumption

y

⊂

x

→

expl

(

y

)

⊆

expl

(

x

)

end

10.

Another method is used in this paper where Section 3 provides a survey of literature on model-based diagnosis where
assumptions are usually discussed as a side aspect of introduced reasoning strategies.

23

This assumption that we constructed with inverse verification was already mentioned in
Section 3.2 as “monotonicity“ assumption. It is used by many approaches for model-based
diagnosis to reduce the computational effort in diagnosis. It assumes that a smaller set of
hypothesis always can explain less observations, i.e. extending a set of hypotheses is a
straightforward way to enrich the explanatory power of the hypotheses set.

Clearly, inverse verification states a typical abductive problem:

“The problem of performing deduction of new facts from a set of axioms is well-studied
and understood. An equality important but far less explored problem is the derivation of
hypotheses to explain observed events. In formal terms this involves finding an

assumption

 that, together with some axioms, implies a given formula.“ [Cox &
Pietrzykowski, 1986]

[de Kleer, 1986] describes a truth-maintenance system (ATMS) that could in principle
applied to our problem. Actually most of the approaches to model-based diagnosis we
discussed in section 3 use adaptations of this technique. However, applying this technique
introduces two strong (meta-)assumptions:

• All the assumptions required to solve the gap between the goals of the task and the
competence of the PSM must already be known and provided to the system.

• The system needs to know the impacts of the assumptions, i.e. their influence on the truth
of the formulas describing competence of the problem-solving method and the goals of
the task.

If this complete knowledge is available establishing the proper set of assumptions boils down
to select a minimal set of assumptions and a bookkeeping mechanism like ATMS can process
this task. When such a complete set of assumptions does not exist, finding assumptions is
rather a constructive activity.

Constructive approaches to derive such assumptions (also called weakest preconditions
[Dijkstra, 1975]) can be found in program debugging with inductive techniques (cf. [Shapiro,
1982], [Lloyd, 1987]), explanation-based learning (cf. [Minton et al., 1989], [Minton, 1995])
or more general in inductive logic programming ([Muggleton & Buntine, 1988], [Muggleton
& De Raedt, 1994]). However, these approaches achieve automatization by making strong
(meta-)assumption about the syntactical structure of the representation formalisms of the
components, about the representations of the “error“, and about the way an error can be fixed.
Usually, Prolog or Horn logic is the assumed representation formalism and errors or counter-
examples are represented by a set of input-output tuples or a finite set of ground literals.
Modification is done by changing the internal specification of a component. In this scenario,
error detection boils down to backtrack a resolution-based derivation tree for a “wrong“
literal. In extension to the scope of these techniques, we have to aim for new formulas (i.e., an
assumption may be represented by a complex first-order formula) and our “counter-
examples“ are not represented by a set of ground literals but by a complex first-order
specification. Again most of the mentioned approaches do not regard architectural
descriptions of the entire reasoning system. An exception form approaches to explanation-
based learning that use explicit architecture axioms [Minton, 1995].

24

4.3 Constructing Knowledge to Fulfil Assumptions

Up to now, we have discussed assumptions as input of the verification process and as
outcome of the inverse verification process. But what to do if some assumption is proven to
be necessary without being fulfilled? That is, inverse verification has shown they are required
to enable proper relationships between the components, and verification has proven that the
responsible component does not fulfil the assumption. Usually these assumptions formulate
requirements on domain knowledge that is not (yet) available. Therefore, such derived but
violated assumptions define goals for manual and automatic knowledge acquisition
techniques that can make use of these explicit goals. Using such assumptions as goals for
machine learning, knowledge discovery, and data mining techniques therefore introduces
interesting links to recent work on

goal

-driven learning [Ram & Leake, 1995b] and
knowledge discovery approaches [Mark, 1996] that reflect the task environment the
knowledge should be used in (see [Engels, 1996], [Engels et al., submitted]). Two basic
principles are shared with these approaches:

• the use of an architecture that structures problem solving and learning ([Ram et al.,
1995])

• the explicit notion of goals (or target concepts) that guide the problem-solving and
learning process [Ram & Leake, 1995a].

Most of the learning effort is viewed to be triggered from knowledge gaps and failures [Ram
et al., 1995]. Assumptions are explicit notions of what is required as knowledge by the
reasoner. In that sense they allow the application of learning techniques during the
development and design process of the systems. Instead of manifesting itself as a runtime
error, a knowledge gap and failure is made explicit from the beginning. The notion of goals
and target concepts for selecting and guiding learning techniques enables these techniques to
deal with goals and failures indicated by assumptions, for example:

•

complete fault knowledge.

Using explanation-based or conceptual clustering techniques
to generalize cases of misbehavior of the device that cannot be explained by the
diagnostic problem solver, can lead to a realistic task definition that specifies the cases
that can/cannot be solved by the problem solver.

•

Existence of input-output description of components.

Scientific discovery techniques
can be used to derive functional representations from observing the behavior of the
components.

•

Single-fault assumption.

Learning techniques that modify the representation formalism
of the device can derive a representation where multi-faults are represented by single
entities.

•

Existence of heuristic search-control knowledge.

Explanation-based learning
techniques are designed to learn control rules that should improve system performance.
Clustering techniques can be used to establish hierarchical structured system description.

5 CONCLUSIONS

[Fensel & Groenboom, 1997] introduced an architecture for the description of knowledge-
based systems that decomposes its specification into four different parts: a task, specifying

25

the reasoning goals of the system; a PSM, specifying its reasoning behavior; a domain model
that provides the required domain knowledge; and an adapter establishing the proper
relationship between the different parts and enable reusability of the other parts. This
architecture generalizes existing approaches as the

model of expertise

 of CommonKADS
[Schreiber et al., 1994] for purpose of reusability of the different elements of the model. This
architecture focuses the attention on the different types of assumptions that have to be made
to establish a consistent and correct system model. It is essential to know the underlying
assumptions of a reasoning system in order to know when it is applicable. Moreover,
assumptions are good ways to characterise systems and they can be used to guide the
acquisition process of domain knowledge. They define the type of knowledge and its
properties as they are required by the reasoner. In this paper, we have dealt with three aspects
related to these assumptions:

• We showed the complementary role assumptions play to restrict the complexity of the
task or the required competence of the domain knowledge used as resource for the
reasoning process. We called this the law of conservation of assumptions [Benjamins et
al., 1996].

• We provided an extensive survey on assumptions based on work on model-based
diagnosis. This survey provides an empirical base of our argument.

• Finally, we sketched the role of assumptions in the development

process

 of a reasoning
system. They define obligations for verification, goals for inverse verification, and target
concepts for manual and automatic knowledge construction techniques.

Currently, we apply our ideas to PSMs from the area of design problem solving [Fensel et al.,
1997], planning [Barros et al., 1997] and develop more systematic support in explicating the
context of knowledge components and in adapting them to changed context [Fensel &
Schönegge, submitted]. This should enable the reuse of knowledge components and
knowledge-based reasoners in heterogeneous environments [Benjamins, 1997], [Fensel,
1997a].

Acknowledgment.

 We thank Claudia Böttcher, Bert Bredeweg, Joost Breuker, Kees de
Koning, Remco Straatman

,

Annette ten Teije,

and Frank van Harmelen for helpful
comments.

Richard Benjamins was partially supported by the Netherlands Computer Science
Research Foundation with financial support from the Netherlands Organisation for
Scientific Research (NWO), and by the European Commission through a Marie Curie
Research Grant (TMR).

REFERENCES

[Abu-Hanna, 1994] A. Abu-Hanna: Multiple Domain Models in Diagnostic Reasoning, PhD thesis,
University of Amsterdam, 1994.

[Abu-Hanna et al., 1991] A. Abu-Hanna, V. R. Benjamins and W. N. H. Jansweijer: Device
Understanding and Modeling for Diagnosis,

IEEE-Expert

, 6(2):26—32, 1991.
[Akkermans et al., 1993] J. M. Akkermans, B. Wielinga, and A. TH. Schreiber: Steps in Constructing

Problem-Solving Methods. In N. Aussenac et al. (eds.),

Knowledge-Acquisition for Knowledge-
Based Systems

, LNAI 723, Springer-Verlag, Berlin, 1993.

26

[Angele et al., 1996] J. Angele, D. Fensel, and R. Studer: Domain and Task Modelling in MIKE. In A.
Sutcliffe et al. (eds.),

Domain Knowledge for Interactive System Design

, Chapman & Hall,
1996.

[Barros et al., 1997] Barros, L. Nunes de, J. Hendler, and V. R. Benjamins: Par-KAP: A Knowledge
Acquisition Tool for Building Practical Planning System. In

Proceedings of the 15th
International Joint Conference on Artificial Intelligence (IJCAI ´97)

, Nagoya, Japan, August
1997.

[Benjamins, 1993] R. Benjamins:

Problem-Solving Methods for Diagnosis

, PhD Thesis, University of
Amsterdam, Amsterdam, the Netherlands, 1993.

[Benjamins, 1995] V. R. Benjamins: Problem Solving Methods for Diagnosis And Their Role in
Knowledge Acquisition,

International Journal of Expert Systems: Research and Application

,
8(2):93—120, 1995.

[Benjamins, 1997] R. Benjamins: Problem-Solving Methods in Cyberspace. In

Proceeedings of the
Workshop on Problem-Solving Methods for Knowledge-based Systems (W26)

 of the

Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI-97),

NAGOYA, Japan, August
23-29, 1997.

[Benjamins & Aben, 1997] R. Benjamins and M. Aben: Structure-Preserving Knowledge-Based
System Development through Reusable Libraries: a Case Study in Diagnosis,

 International
Journal on Human-Computer Studies (IJHCS)

, 47(2):223—258, 1997.
[Benjamins et al., 1996] R. Benjamins, D. Fensel, and R. Straatman: Assumptions of Problem-Solving

Methods and Their Role in Knowledge Engineering. In

Proceedings of the 12. European
Conference on Artificial Intelligence (ECAI-96)

, Budapest, August 12-16, 1996.
[Benjamins & Pierret-Golbreich, 1996] R. Benjamins and C. Pierret-Golbreich: Assumptions of

Problem-Solving Methods. In N. Shadbolt et al. (eds.),

Advances in Knowledge Acquisition

,
Lecture Notes in Artificial Intelligence (LNAI), no 1076, Springer-Verlag, Berlin, 1996.

[Böttcher, 1996] C. Böttcher: No Faults in Structure? - How to Diagnose Hidden Interactions, 1996.
[Böttcher & Dressler, 1994] C. Böttcher and O. Dressler: A Framework For Controlling Model-Based

Diagnosis Systems with Multiple Actions,

Annals of Mathematics and Artificial Intelligence

,
11:241-261, 1994.

[Breuker, 1997] J. Breuker: Problems in Indexing Problem Solving Methods. In

Proceeedings of the
Workshop on Problem-Solving Methods for Knowledge-based Systems (W26)

 of the

Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI-97),

NAGOYA, Japan, August
23-29, 1997.

[Breuker & Van de Velde, 1994] J. Breuker and W. Van de Velde (eds.):

The CommonKADS Library
for Expertise Modelling

, IOS Press, Amsterdam, The Netherlands, 1994.
[Bylander, 1991] T. Bylander: Complexity Results for Planning. In

Proceedings of the 12th
International Joint Conference on Artificial Intelligence (IJCAI-91)

, Sydney, Australia, August
1991.

[Bylander & Chandrasekaran, 1988] T. Bylander and B. Chandrasekaran: Generic Tasks in
Knowledge-Based Reasoning. The Right Level of Abstraction for Knowledge Acquisition. In
B. Gaines et al. (eds.):

Knowledge Acquisition for Knowledge-Based Systems

, vol I, pp. 65—77,
Academic Press, London, 1988.

[Bylander et al., 1991] T. Bylander, D. Allemang, M. C. Tanner, and J. R. Josephson: The
Computational Complexity of Abduction,

Artificial Intelligence

, 49, pages 25—60, 1991.
[Chandrasekaran, 1986] B. Chandrasekaran: Generic Tasks in Knowledge-based Reasoning: High-

level Building Blocks for Expert System Design.

IEEE Expert

, 1(3): 23—30, 1986.
[Chandrasekaran, 1991] B. Chandrasekaran: Models versus rules, deep versus compiled, content

27

versus form,

IEEE-Expert

, 6(2): 75--79.
[Chandrasekaran et al., 1992] B. Chandrasekaran, T.R. Johnson, and J. W. Smith: Task Structure

Analysis for Knowledge Modeling,

Communications of the ACM

, 35(9): 124—137, 1992.
[Clancey, 1985] W.J. Clancey: Heuristic Classification,

Artificial Intelligence

, 27:289

—

350, 1985.
[Console & Torasso, 1992] L. Console and P. Torasso: A Spectrum of Logical Definitions of Model-

Based Diagnosis. In W. Hamscher et al. (eds.),

Readings in Model-based Diagnosis

, Morgan
Kaufman Publ., San Mateo, CA, 1992.

[Cox & Pietrzykowski, 1986] P. T. Cox and T. Pietrzykowski: Causes of Events: Their Computation
and Application. In

Proceedings of the 8th International Conference on Automated Deduction

,
Oxford, England, July 27 - August 1, LNCS 230, Springer-Verlag, 1986.

[Davis, 1984] R. Davis: Diagnostic Reasoning Based on Structure and Behavior,

Artificial
Intelligence

, 24: 347-410, 1984.
[Davis & Hamscher, 1988] R. Davis and W. Hamscher: Model-based Reasoning: Troubleshooting. In

H. E. Shrobe (ed.),

Exploring AI: Survey Talks from the National Conference on AI

, Morgen
Kaufman, San Mateo, CA, 1988.

[Dijkstra, 1975] E. W. Dijkstra: Guarded Commands, Nondeterminacy, and Formal Derivation of
Programs,

Communication of the ACM,

 18:453-457, 1975.
[Engels, 1996] R. Engels: Planning Tasks for Knowledge Discovery in Databases; Performing Task-

Oriented User-Guidance. In

Proceedings of the 2nd International Conference on Knowledge
Discovery in Databases (KDD-96)

, 1996.
[Engels et al., submitted] R. Engels, G. Lindner, and R. Studer: Process Guidance for Knowledge

Discovery, submitted.
[Eriksson et al., 1995] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta, and M. A. Musen: Task

Modeling with Reusable Problem-Solving Methods,

Artificial Intelligence

, 79(2):293—326,
1995.

[Fensel, 1995a] D. Fensel: Assumptions and Limitations of a Problem-Solving Method: A Case Study.
In

Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW´95)

, Banff, Canada, January 26 - February 3, 1995.
[Fensel, 1995c] D. Fensel: Formal Specification Languages in Knowledge and Software Engineering,

The Knowledge Engineering Review

, 10(4), 1995.
[Fensel, 1997a] D. Fensel: An Ontology-based Broker: Making Problem-Solving Method Reuse

Work. In

Proceeedings of the Workshop on Problem-Solving Methods for Knowledge-based
Systems (W26)

 of the

Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-
97),

NAGOYA, Japan, August 23-29, 1997.
[Fensel, 1997b] D. Fensel: The Tower-of-Adapter Method for Developing and Reusing Problem-

Solving Methods. In E. Plaza et al. (eds.),

 Knowledge Acquisition, Modeling and Management

,
Lecture Notes in Artificial Intelligence (LNAI), 1319, Springer-Verlag, 1997.

[Fensel & Benjamins, 1996] D. Fensel and R. Benjamins: Assumptions in Model-Based Diagnosis. In

Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW´95)

, Banff, Canada, November 9 - 14, 1996.
[Fensel et al., 1996] D. Fensel, A. Schönegge, R. Groenboom, and B. Wielinga: Specification and

Verification of Knowledge-Based Systems. In

Proceedings of the 10th Banff Knowledge
Acquisition for Knowledge-Based System Workshop (KAW´96)

, Banff, Canada, November 9-14,
1996.

[Fensel et al., 1997] D. Fensel, E. Motta, S. Decker, and Z. Zdrahal: Using Ontologies For Defining
Tasks, Problem-Solving Methods and Their Mappings. In E. Plaza et al. (eds.),

 Knowledge
Acquisition, Modeling and Management

, Lecture Notes in Artificial Intelligence (LNAI), 1319,

28

Springer-Verlag, 1997.
[Fensel & Groenboom, 1997] D. Fensel and R. Groenboom: Specifying Knowledge-Based Systems

with Reusable Components. In

Proceedings of the 9th International Conference on Software
Engineering & Knowledge Engineering (SEKE-97)

, Madrid, Spain, June 18-20, 1997.
[Fensel & Schönegge, 1997a] D. Fensel and A. Schönegge: Assumption Hunting as Development

Method for Knowledge-Based Systems. In

Proceeedings of the Workshop on Problem-Solving
Methods for Knowledge-based Systems at the 15th International Joint Conference on AI
(IJCAI-97)

, Nagoya, Japan, August 23, 1997.
[Fensel & Schönegge, 1997b] D. Fensel and A. Schönegge: Specifying and Verifying Knowledge-

Based Systems with KIV. In Proceedings of the

12th IEEE International Conference on
Automated Software Engineering (ASEC-97)

, Incline Village, Nevada, November 1997.
[Fensel & Schönegge, submitted] D. Fensel and A. Schönegge: Methods to Solve the Context

Dependency Problem of Problem-Solving Methods, submitted (available via http://
www.aifb.uni-karlsruhe.de/~dfe.

[Fensel & Straatman, to appear] D. Fensel und R. Straatman: The Essence of Problem-Solving
Methods: Making Assumptions to Gain Efficiency, to appear in

The International Journal of
Human Computer Studies (IJHCS)

.
[Fensel et al., to appear] D. Fensel, R. Groenboom, and G. R. Renardel de Lavalette: MCL: Specifying

the Reasoning of Knowledge-based Systems, to appear in

Data and Knowledge Engineering
(DKE)

.
[Garlan and D. Perry, 1995] D. Garlan and D. Perry (eds.), Special Issue on Software Architecture,

IEEE Transactions onSoftware Engineering

, 21(4), 1995.
[Genesereth, 1984] M. R. Genesereth: The Use of Design Descriptions in Automated Diagnosis,

Artificial Intelligence (AI)

, 24:411-436, 1984.
[Goel et al., 1987] A. Goel, N. Soundararajan, and B. Chandrasekaran: Complexity in Classificatory

Reasoning. In

Proceedings of the 6th National Conference on Artificial Intelligence (AAAI-87)

,
Seattle, Washington, July 13-17, 1987.

[O´Hara & Shadbolt, 1996] K. O’Hara and N. Shadbolt: The Thin End of the Wedge: Efficiency and
the Generalized Directive Model Methodology. In N. Shadbolt (eds.),

Advances in Knowledge
Acquisition

, LNAI 1076, Springer-Verlag, Berlin, 1996.
[Harel, 1984] D. Harel: Dynamic Logic. In D. Gabby et al. (eds.),

Handbook of Philosophical Logic,
vol. II

, Extensions of Classical Logic, Publishing Company, Dordrecht (NL), 1984.
[de Kleer, 1986] J. de Kleer: An Assumption-based TMS,

Artificial Intelligence

, 28, 1986.
[de Kleer & Brown, 1984] J. de Kleer and J. S. Brown: A Qualitative Physics Based on Confluences,

Artificial Intelligence

, 24:7-83, 1984.
[de Kleer et al., 1992] J. de Kleer, A. K. Mackworth, and R. Reiter: Characterizing Diagnoses and

Systems,

Artificial Intelligence

, 56, 1992.
[de Kleer & Williams, 1987] J. de Kleer and B. C. Williams: Diagnosing Multiple Faults,

Artificial
Intelligence

, 32:97-130, 1987.
[de Kleer & Williams, 1989] J. de Kleer and B. C. Williams: Diagnosis with Behavioral Modes. In

Proceedings of the 11th International Joint Conference on AI (IJCAI-89)

, Detroit, MI, 1989.
[Lloyd, 1987] J. W. Lloyd: Declarative Error Diagnosis,

New Generation Computing,

 5:133—154,
1987.

[Lydiard, 1992] T. J. Lydiard: Overview of Current Practice and Research Initiatives for the
Verification and Validation of KBS,

The

Knowledge Engineering Review

, 7(2):101—113,
1992.

[Marcus, 1988] S. Marcus (ed.).

Automating Knowledge Acquisition for Experts Systems

, Kluwer

29

Academic Publisher, Boston, 1988.
[Marcus et al., 1988] S. Marcus, J. Stout, and J. McDermott VT: An Expert Elevator Designer That

Uses Knowledge-based Backtracking,

AI Magazine

, 9(1):95—111, 1988.
[Mark, 1996] B. Mark: Special Issue on Data-Mining,

IEEE-Expert

, 11(5), 1996.
[McCluskey, 1956] E. J. McCluskey: Minimizing of Boolean Functions,

Bell Systems Technology
Journal

, 35(5):1417-1444, 1956.
[McIlraith, 1994] S. McIlraith: Further Contribution to Characterizing Diagnosis,

Annals of
Mathematics and AI

, special issues on model-based diagnosis, 11(1-4), 1994.
[Minton, 1995] S. Minton: Quantitative Results Concerning the Utility of Explanation-Based

Learning. In [Ram & Leake, 1995b]

.

[Minton et al., 1989] S. Minton, S. Carbonell, C. Knoblock, D. R. Kuokka, O. Etzioni, and Y. Gil:
Explanation-based Learning: A Problem Solving Perspective,

Artificial Intelligence

, 40:63—
118, 1989

.

[Motta & Zdrahal, 1996] E. Motta and Z. Zdrahal: Parametric Design Problem Solving. In

Proceedings of the 10h Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW´96)

, Banff, Canada, November 9-15, 1996.
[Muggleton & Buntine, 1988] S. Muggleton and W. Buntine: Machine Invention of First-Order

Predicates by Inverting Resolution. In

Proceedings of the 5th International Conference on
Machine Learning (ICML-88)

, Michigan, US, 1988.
[Muggleton & De Raedt, 1994] S. Muggleton and L. De Raedt: Inductive Logic Programming:

Theory and Methods,

 Journal of Logic Programming

, 19/20:629—679, 1994.
[Nebel, 1996] B. Nebel: Artificial intelligence: A Computational Perspective. To appear in G. Brewka

(ed.),

Essentials in Knowledge Representation

.
[Nejdl et al., 1995] W. Nejdl, P. Froehlich and M. Schroeder: A Formal Framework For Representing

Diagnosis Strategies in Model-Based Diagnosis Systems. In

Proceedings of the 14th
International Joint Conference on AI (IJCAI-95)

, Montreal, Canada, August 20-25, 1995.
[Newell, 1982] A. Newell: The Knowledge Level,

Artificial Intelligence

, 18:87—127, 1982.
[Plant & Preece, 1996] R. Plant and A. D. Preece (eds.): Special Issue on Verification and Validation,

International Journal on Human-Computer Studies

, 44, 1996.
[Preist & Welhalm, 1990] C. Preist and B. Welham: Modelling Bridge Faults fo Diagnosis in

Electronic Circuits. In

Proceedings of the 1st International Workshop on Principles of
Diagnosis

, Stanford, 1990.
[Puppe, 1993] F. Puppe:

 Systematic Introduction to Expert Systems: Knowledge Representation and
Problem-Solving Methods

, Springer-Verlag, Berlin, 1993.
[Raiman, 1989] O. Raiman: Diagnosis as a Trial. In

Proceedings of the Model Based Diagnosis
International Workshop

, Paris, 1989.
[Raiman, 1992] O. Raiman: The Alibi Principle. In W. Hamscher et al. (eds.), Readings in model-

based diagnosis, Morgan Kaufmann Publ., San Mateo, CA, 1992.
[Raiman et al., 1991] O. Raiman, J. de Kleer, V. Saraswat, M. Shirley: Characterizing Non-

Intermittent Faults. In

Proceedings of the 9th National Conference on AI (AAAI-91)

, Anaheim,
CA, July 14-19, 1991.

[Ram et al., 1995] A. Ram, M. T. Cox, and S. Narayanan: Goal-Driven Learning in Multistrategy
Reasoning and Learning Systems. In [Ram & Leake, 1995b]

.

[Ram & Leake, 1995a] A. Ram and D. B. Leake: Learning, Goals, and Learning Goals. In [Ram &
Leake, 1995b]

.

[Ram & Leake, 1995b] A. Ram and D. B. Leake:

Goal-Driven Learning

, The MIT Press, 1995.
[Reif, 1995] W. Reif: The KIV Approach to Software Engineering. In M. Broy and S. Jähnichen

30

(eds.):

Methods, Languages, and Tools for the Construction of Correct Software

, Lecture Notes
in Computer Science (LNCS), no 1009, Springer-Verlag, Berlin, 1995.

[Reiter, 1987] R. Reiter: A Theory of Diagnosis from First Principles,

Artificial Intelligence

, 32:57-
95,1987.

[Schreiber et al., 1993]A.T. Schreiber, B.J. Wielinga, and J. A. Breuker (eds.):

KADS: A Principled
Approach to Knowledge-Based System Development, vol 11 of Knowledge-Based Systems Book
Series

, Academic Press, London, 1993.
[Schreiber et al., 1994] A.T. Schreiber, B. Wielinga, J. M. Akkermans, W. Van De Velde, and R. de

Hoog: CommonKADS. A Comprehensive Methodology for KBS Development,

IEEE Expert

,
9(6):28—37, 1994.

[Shapiro, 1982] E. Y. Shapiro:

Algorithimc Program Debugging

, The MIT Press, 1982.
[Shaw & Garlan, 1996] M. Shaw and D. Garlan: S

oftware Architectures. Perspectives on an
Emerging Discipline

, Prentice-Hall, 1996.
[Steels, 1990] L. Steels: Components of Expertise,

AI Magazine

, 11(2), 1990.
[Sticklen et al., 1989] J. Sticklen, B. Chandrasekaran, and W.E. Bond: Applying a Functional

Approach for Model Based Reasoning, Proc. of (IJCAI) Workshop on Model Based Reasoning,
Detroit, 1989,

[Struss, 1992] P. Struss: Diagnosis as a Process. In W. Hamscher etal. (eds.),

Readings in Model-
based Diagnosis,

 Morgan Kaufman Publ., San Mateo, CA, 1992.
[Struss & Dressler, 1989] P. Struss and O. Dressler: “Physical Negation“—Integrating Fault Models

into the General Diagnostic Engine. In

Proceedings of the 11th International Joint Conference
on AI (IJCAI-89)

, Detroit, MI, 1989.
[ten Teije & van Harmelen, 1996] A. ten Teije and F. Van Harmelen: Using reflection techniques for

flexible problem solving (with examples from diagnosis),

Future Generation Computer
Systems

, 12:217—234, 1996.
[Terpstra et al., 1993] P. Terpstra, G. van Heijst, B. Wielinga, and N. Shadbolt: Knowledge

Acquisition Support Through Generalised Directive Models. In M. David et al. (eds.):

Second
Generation Expert Systems

, Springer-Verlag, 1993.
[Van de Velde, 1988] W. van de Velde: Inference Structure as a Basis for Problem Solving. In

Proceedings of the 8th European Conference on Artificial Intelligence (ECAI-88)

, Munich,
August 1-5, 1988.

[van Heijst et al., 1992] G. van Heijst, P. Terpstra, B. J. Wielinga and N. Shadbolt: Using Generalised
Directive Models in Knowledge Acquisition. In T. Wetter et al. (eds.),

Current Developments
in Knowledge Acquisition

, LNAI, Springer-Verlag, 1992.
[Wielinga et al., 1995] B. Wielinga, J. M: Akkermans, and A. TH. Schreiber: A Formal Analysis of

Parametric Design Problem Solving. In

Proceedings of the 9th Banff Knowledge Acquisition for
Knowledge-Based System Workshop (KAW´95)

, Banff, Canada, January 26 - February 3, 1995.

