

1

An Ontology-based Broker:
Making Problem-Solving Method Reuse Work

Dieter Fensel
University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany.

E-mail: dieter.fensel@aifb.uni-karlsruhe.de

Abstract.

We present the architecture of an intelligent broker for enabling the use of
problem-solving methods via the World Wide Web (WWW). The core component of such
a broker is realised by an ontologist and an adapter. Ontologies mediate between domain-
specific requirements and knowledge, task-specific problem descriptions and method-
specific terms describing the competence and requirements of the reasoning components.
The ontological reasoning for relating the different ontologies is supported by the
ontologies. Adapters are necessary to provide domain knowledge and case data to
problem-solving methods and to rephrase the output of problem-solving methods into
domain-specific terms. Therefore, the ontologist mediates the

selection

 and

adaptation

process of PSMs whereas the adapter mediates the

execution

 of them.

1 Introduction

The slogan level is the level above the knowledge level
where you can introduce CIFs (i.e., community interchange formats).

The concept

problem-solving method

 (PSM) is present in a large part of current knowledge-engineering
frameworks (e.g.

 GENERIC TASKS

[CJS92];

ROLE-LIMITING METHODS

[Mar88], [Pup93];

CommonKADS

 [SWA+94]; the

METHOD-TO-TASK

approach

[EST+95];

COMPONENTS OF
EXPERTISE

[Ste90];

GDM

 [THW+93];

MIKE

 [AFS96]). Libraries of PSMs are described in [Ben95],
[BV94], [CJS92], [MoZ96], and [Pup93]. In general a PSM describes in a domain-independent way
which reasoning steps and which types of knowledge are needed to perform a task. Problem solving
methods are used in a number of ways in knowledge engineering: as a guideline to acquire problem-
solving knowledge from an expert, as a description of the main rationale of the reasoning process of
the expert and the knowledge-based system, as a skeletal description of the design model of the
knowledge-based system, and to enable flexible reasoning by selecting methods during problem
solving.

PSM should enable reuse of reasoning strategies. However, only a few example of actual reuse of
implemented PSM can be found. Mainly two reasons can be identified for this shortcoming. A
pragmatical problem is that implemented PSMs make strong assumptions on software and hardware
environments that limit reuse in other environments. Another problem at a more theoretical level is the
fact that it is usually very difficult to relate the competence and knowledge requirements of a PSM with
the actual problem (i.e., task) and the available domain knowledge. This is also discussed as the

indexing

 problem. That is, how to annotate PSMs that they can easily be selected and adapted to given
task-specific and domain-specific circumstances.

Our work provides a contribution to overcome these two bottlenecks that hampers the successful reuse
of PSMs. First, we discuss the idea of using ontologies to represent task-, domain-, and PSM-specific
terminologies and formulating the indexing and mapping problem as ontological reasoning. Second,

2

we present the architecture of an intelligent broker that realises these ontological reasoning processes
and that provides the possibilities to integrate PSMs in the WWW.

1

 Therefore, hardware and software
limitations can be bypassed if an application has appropriate access to the WWW. Adapters (cf.
[FeG97]) realize the translation process between different terminologies by realising the knowledge
flows and dataflows between applications and PSMs.

We discuss the

selection

 and

adaptation

 of PSMs from the WWW. That is, we do not discuss the case
of distributed problem solving or automatic re-configuration of problem solvers during the problem
solving process. Instead, after selecting and adapting one PSM it is assumed that the method solves the
given application problems. Therefore, assumptions over the task and requirements on domain
knowledge have to be evaluated carefully. Finally, we do not regard down loading of PSMs to the
clients side. For pragmatical reasons, we assume instead the method running on a central PSMs-server.

In section 2 we present the general architecture of an intelligent broker providing PSMs to WWW-
clients. Its core elements are described respectively in section 3 and section 4. It consists of an
ontological reasoner and of adapters. The

ontologist

 finds PSMs based on task-specific and PSM-
specific ontologies. The

adapter

 maps these different terminologies to enable knowledge and data
exchange between PSMs and domain knowledge. Related work is discussed in section 5. Finally, we
provide conclusions in section 6.

2 The Intelligent Broker

Providing different libraries of problem-solving methods via the net requires an

intelligent broker

 (IB)
that mediates between customers and providers of PSMs. The general layered architecture of such a
broker is depicted in Figure 1. The IB has to communicate with client via

clients systems

. A client is
somebody who has a complex problem but can provide domain knowledge that describes this problem
and that supports problem-solving. Because we assume the WWW as medium of interactions, we want

1.

Whereas the development of such an intelligent broker (intelligent because it is based on ontological reasoning) can be
realised by one research group it requires a joint activity of the knowledge acquisition community to present their PSMs in a
way that they can communicate with the broker.

Fig. 1 The layered architecture of the intelligent broker.

Client Systems (WWW-Clients)

Client Interface

Provider Interface

Ontologist

Provider Systems (PSM- Libraries)

Intelligent Broker

Adapter
Core

3

to provide support for WWW-

clients

as client systems (e.g., Netscape). The providers are developer
teams for PSMs. Their

provider systems

 are annotated libraries of PSMs. The PSMs are
implementations that solve complex tasks by using domain knowledge for defining and solving the
problem. Their annotations are necessary to support their selection process and the communication
process with the methods.

The three layers of the functionality of an IB are

client interface

,

provider interface

, and

core

 (cf.
Figure 1). We will discuss them during the following.

2.1 Client Interface

The

client interface

 of the IB shall be used for two types of communications with the client. First, it has
to communicate with the client system of the customer for mediating the translation and negotiation
process that transforms the requirements into features that can be used to guide the selection process of
a PSM. Second, it has to receive the domain knowledge and case data from the client and it has to
provide the solutions of the PSM to the client system.

In this scenario, the PSM is offered as a

service

 to web-clients. They can also be offered as a

product

.
Instead of executing the PSM by the provider it would in principle also be possible to down load the
PSM by the client. However, this requires platform independent implementation of PSMs and the client
also had to download the adapter element of the IB (see section 4) that manages the terminological
mapping between PSM, task, and domain. Therefore, we exclude this more complex possibility at the
moment.

2.2 Provider Interface

The IB deals with provider systems via the

provider interface

. A provider system is a library of PSMs.
A provider interface asks for two main elements.

First, a provider interface asks for descriptions of the components of PSMs that allow to select and to
work with these components. We require three types of descriptions that have to be provided by a
library of PSM: information that is relevant for selecting components; information about the syntactical
structure of input and output of a components when executing them; and information about its
communication style. A provider that wants to be regarded by the IB has to provide each information
in a standardised way. We currently examine formal languages like CARIN [LeR96], Frame-logic
[KLW95] (i.e, FLORID), LOOM [Mac90], Ontolingua

2

 [FFR96], and SHOE [LSR96] as

languages

 to
express the selection criteria. These approaches allow the representation of terminological knowledge
and inferences to derive additional information on these terminologies. In addition, we have to develop
standard

ontologies

 for describing PSMs and tasks (cf. [Tei97], [DFM??]).

Second, a provider interface asks for the service of the components that realize problem solving for
complex tasks requiring domain knowledge and case data as input and providing a solution to the
interface.

2.3 The Core of an IB for PSMs

The core of an IB (for PSMs) consists of two main elements: an

ontologist

 and an

adapter

. An

ontologist

 must support the selection and adaptation process of PSMs for a given application. Basically
it has to provide support in building or reusing a domain ontology and in relating this ontology with a
task ontology that describe generic classes of application problems. This task ontology has to be linked

2.

Ontolingua provides excellent tool support for constructing standardized ontologies. However its support in ontological
inferences is very limited.

4

with PSM-specific ontologies that allow the selection of a method if a task model is constructed. We
will provide examples for these ontologies and their connections in the following sections. Besides
modelling and connecting different ontologies we have to provide the actual mapping of these
terminologies via an

adapter

 [FeG97] for executing a PSM. In principle this mapping could be
achieved by always repeating the ontological reasoning that was necessary to establish the link between
domain, task and PSM. However, this looks not very promising from a performance point of view.
Therefore, we have to provide (semi-)automatic support in constructing an adapter using the outcome
of the ontological reasoner as input. Adapters (also called

mediators

) that relate heterogeneous
information are also investigated in the database area, cf. [Wie92].

2.4 Components and Dataflows of the IB

The layer specification of the functionality of the IB shall be realized by four software components and
three shared ontologies (see Figure 2). Each software component is realized by an agent type: a

client
agent

, a

provider agent

, an

ontology agent

and an

adapter agent

. This multi-agent-architecture has
several advantages. The four different agents types can be developed and realized by different groups
and running on different servers. Several client or provider agent (i.e., instances of the agent type) can
be run in parallel (one for each current client and/or provider). Clients and Provider can develop their
own agents if they fit into the conventions of the core components. Finally, also different core
components can be developed by other groups.

The components of the IB use three different ontologies: domain ontologies (D

O

), task ontologies (T

O

),
and PSM ontologies (P

O

). These ontologies provide the contents of their communication processes.
The communication between the agent should be realised by message passing. Because this
communication includes the exchange of knowledge, it will be investigated whether KQML [FMF+94]
can be used as communication means. In general, two general types of information flows exist. One is
concerned with the process of finding appropriate PSMs and the other is concerned with actually
solving the problem via a selected PSM. Each can be further distinguished by the contributing agents
and the direction of the communication. In total, eight different communications can be distinguished

Fig. 2 Internal dataflows, agents, and libraries of the intelligent broker.

Client agent

Provider agent

Ontology agent

request

negotiation

ontology
mappingAdapter agent

domain knowledge
and case data

solution

PSM-input query

response
PSM-output

information

DO

TO

PO

5

(see Table 1 for a survey). One additional communication type is an internal communication of the core

that uses the ontological information derived by the ontology agent to construct or select an adapter that
can provide the runtime mapping of terms as required by client and provider agents. The

ontology
mapping information

 (cf. Fig. 2) enables an adapter to realize the communication between clients and
providers.

Gist of the matter of our IB are the ontology and adapter agents and the ontology libraries which will
be discussed subsequently during the following.

3 The Ontology Agent and Its Ontologies

The ontology agent must provide service to construct and to connect different ontologies. First, it
requires a

task ontology

 that describes classes of generic application problems in domain-independent
terms. This ontology provides definitions of classification problems, allocation problems, diagnostic
problems, planning problems etc. (cf. [BV94]). This task ontology is used to negotiate with the client
agent for building an application-specific domain ontology

and

 with the provider agents for selecting
a PSM via its PSM-ontology. Both aspects are discussed subsequently during the following:

Table 1. Eight different information flows

Finding a PSM Using a PSM

Sending a request from the client agent to the ontology agent. Terms
of the domain and task ontologies are the content of the message. The
client agent uses a

domain ontology

to guide the interaction process
with the client and it sends selected expressions to the ontology agent.

Sending domain
knowledge and case
data from the client
agent to the adapter
agent.

Sending a negotiation from the ontology agent to the client agent. The
ontology agent need further clarification from the client before it can
finish the selection process of PSMs. This clarification may ask for
more precise definitions of terms and their relationships necessary to
derive from an element of the domain ontology an element of the task
ontology.

Sending a solution
from the adapter
agent to the client
agent.

Sending a query from the ontology agent to a provider agent. After
having translated the domain-specific terminology into a task-specific
terminology the ontology agent has to derive an expression in a PSM-
specific ontology. Then, this expression is passed as a query to the
provider agent.

Sending an input
from the adapter
agent to a provider
agent.

Sending a response from a provider agent to the ontology agent. The
response of a provider agent may have two forms: providing a simple
yes that the required service can be provided or the wish to introduce
further

assumptions

 on the task that make the problem tractable and/
or the introduction of

requirements

 on domain knowledge that has to
be provided by the client (cf. [BFS96]).

Sending an output
from a provider agent
to the adapter agent.

6

•

Linking domain and task:

Support must be provided for the client to build a new or to reuse an
existing

domain ontology

 describing his problem (i.e., his requirements on a solution) and the
available domain knowledge and to link this domain ontology with the task ontology of the
ontology agent. Our approach does not make any assumptions about whether this application-
specific domain knowledge is built from scratch or whether it is gained by adapting an already
given domain ontology. Existing environments as Ontolingua [FFR96] can support these
processes.

•

Linking task and PSM:

 Besides linking domain and task, the ontology agent must link task and
PSMs. He needs knowledge of how terms describing the competence of methods are linked with
terms of the task ontology. These ontological connections have to be provided by the provider.
They have to build their

PSM ontologies

and have to establish the links with the task ontology.
Notice, that PSMs shall be described independent from a specific task they can be applied to.
Therefore, they have to be linked explicitly to all tasks they can solve (cf. [BBH96]).

3.1 Agreement on Domain and Task Ontologies

In the following, we provide an illustration using a simplified version of

the Sisyphus room-
assignment problem

[Lin94]. It describes a problem in which employees are assigned to office places.
A GMD department is moving into a new building and the new working places should be distributed
to the employees. We will provide different task ontologies to illustrate their scope and the process of
connecting them.

In the first step, the client has to select the appropriate task from the set of all tasks. The task ontology
(cf. [BV94]) describes generic problem types from which an appropriate one has to be chosen. Imagine
that our task ontology provides besides others a task

assignment

 (cf. Figure 3) and that the client was
able to select this task definition.

3

 He can now use the task schema as a skeleton to model his

TASK assignment1

CONSISTS OF
CONSUMER ≤ THING
RESOURCE ≤ THING
ASSIGNMENT ≤ RESOURCE x CONSUMER
ASSIGNMENTS ≤ SET OF ASSIGNMENT
CONSTRAINT ≤ SET OF ASSIGNMENTS
PREFERENCE ≤ ASSIGNMENTS x ASSIGNMENTS
COMPLETE ≤ ASSIGNMENTS
CORRECT ≤ ASSIGNMENTS

c ∈ CONSUMER
r ∈ RESOURCE
A, Goal ∈ ASSIGNMENTS
each resource can only be consumed once

(c,r) ∈ A ∧ (c´,r´) ∈ A ∧ c ≠ c´ → r ≠ r´
a complete assigment

(c ∈ CONSUMER → ∃ r . (c,r) ∈ A) → COMPLETE(A)
a correct assigment

¬ ∃ C(C ∈ CONSTRAINT ∧ A ∈ C) → CORRECT(A)
the goal is complete and correct

COMPLETE(Goal) ∧ CORRECT(Goal)
the goal is prefered

CORRECT(A) ∧ COMPLETE(A) ∧ A ≠ Goal → ¬ (Goal,A) ∈ PREFERENCE
ENDTASK assigment

1. The logical language we use is S-logic (i.e., Slogan level logic).

Fig. 3. The task ontology for simple assignments with one consumer type and one provider type.

7

application-specific domain model. He links employees with CONSUMER and working places in office
rooms with RESOURCE. Then, he has to formulate constraints on desired assignments. In his domain, a
critical decision is to put two persons into the same office. Attributes that are critical are whether both
employees smoke tobacco or not, and the aspect that both should work in different projects to support
cross-fertilization. Based on these domain-specific circumstances, he defines his constraints. Finally it
remains to define some preferences to distinguish two legal assignments. We use only one criterion of
[Lin94] concerning the centrality of the working place of the boss of the group. The entire ontology
mapping of task and domain is provided in Figure 4. Notice that these ontological negotiation process
were done completely independent from any PSM-specific aspects. This aspect will discussed in the
following.

3.2 Transforming the Task Ontology

We will now discuss the case where we cannot find directly a method for the selected task. However,
we assume the existence of a method for the closely related tasks of parametric design (cf. Fig. 5.).
Parametric design defines the task of designing an artefact by assigning values to a given set of
parameters. Such an assignment must be complete (i.e., each value must have a parameter), correct (i.e.,
no constraint may be violated), and preferred (i.e., the solution should be optimal). This task can be
transformed to express the assignment task of Fig. 3. We have to establish the links as defined in Figure
6. In general there are three possibilities to achieve such a transformation:

• The broker has such a strong ontological inference engine that it can derive the ontological
mapping necessary to translate one task ontology into another.4

• The broker has the knowledge that one task ontology can be translated into the other and how this
transformation can be achieved.

• The provider of PSMs annotate their PSMs with different types of tasks a method can be applied
for.

Each solution poses the problem to a different group of tool provider (i.e., developers of inference
engines for description languages, builders of the brokers, and the providers of PSMs).

3.3 Agreement on Task and PSM Ontologies

After establishing a link between domain and task one has to establish a link between task and PSM.

3. Clearly this process needs to be further supported by methods and techniques of the requirements engineering community.
4. Actually we are very pessimistic about this alternative as the expressive power of all existing systems is already smaller then
what we used to define the tasks.

Application ontology
ENRICH domain ontology, assignment

CONSUMER = EMPLOYEE
RESOURCE = WORKING PLACE
employee1, employee2 ∈ CONSUMER
place1, place2 ∈ RESOURCE
(employee1,place1) ∈ Α ∧ (employee2,place2) ∈ Α ∧ same-room(place1,place2) ∧
¬ fit-together(employee1,employee2)

→ A ∈ CONSTRAINT
smoker(employee1) ∧ ¬ smoker(employee2) ∨ ¬ smoker(employee1) ∧ smoker(employee2)

→ ¬ fit-together(employee1,employee2)
project(employee1) = project(employee2) → ¬ fit-together(employee1,employee2)
(boss,place1) ∈ Α 1 ∧ (boss,place2) ∈ Α 2 ∧ centrality(place1) < centrality(place2) → PREFERENCE(Α1,Α2)

END application ontology

Fig. 4. The connection of domain and task ontologies by an application ontology.

8

Figure 7 provides the definition of the propose & revise method. It delivers a state that is complete,
correct, and optimal. Finding such a state is usually an intractable problem (cf. [Neb96], [FeS96]). It is
therefore necessary to negotiate additional requirements on domain knowledge and assumptions that
limit the general scope of the task. Propose & revise can only solve such tasks with reasonable
computational effort by introducing assumptions that restrict the complexity of the problem or by
introducing requirements on domain knowledge [BFS96]. Two types of domain knowledge are
required by the method (cf. Fig. 7.):

• PROPOSE-Knowledge that allows successive completion of design models.
• FIX-Knowledge that allows repair of incorrect design models.

The method can only be applied if these two types of knowledge are provided by a domain expert. Both
knowledge types are further characterized by axioms that are necessary to guarantee that the
competence of the method implies the task definition. How such axioms can be derived and proven is
described in [FeS??a], [FeS??b]. These axioms have to be negotiated with the client and either stated
as requirements on domain knowledge provided by the client or as weakening of the task. That is, the
method does not guarantee to find a optimal solution or it does not guarantee to always find a solution
even for cases where such a solution exist.

The link of the PSM propose & revise with the task parametric design that leads to the PSM propose
& revise for parametric design is provided in Figure 8. Mainly two things have to be done: defining a

TASK parametric design
CONSISTS OF

PARAMETER ≤ THING
VALUE RANGE ≤ SET OF THING
VALUE RESTRICTION ≤ PARAMETER → VALUE RANGE
ASSIGNMENT ≤ PARAMETER → Y, Y ∈ VALUE RESTRICTION(PARAMETER)
DESIGN MODEL ≤ SET OF ASSIGNMENT
CONSTRAINT ≤ SET OF DESIGN MODEL
PREFERENCE ≤ DESIGN MODEL x DESIGN MODEL
COMPLETE ≤ DESIGN MODEL
CORRECT ≤ DESIGN MODEL

p ∈ PARAMETER
v ∈ Y, Y ∈ VALUE RESTRICTION(PARAMETER)
D, Goal ∈ DESIGN MODEL
a complete assigment

(p ∈ PARAMETER → ∃ v . (p,v) ∈ D) → COMPLETE(D)
a correct assigment

¬ ∃ C(C ∈ CONSTRAINT ∧ D ∈ C) → CORRECT(D)
the goal is complete and correct

COMPLETE(Goal) ∧ CORRECT(Goal)
the goal is prefered

CORRECT(D) ∧ COMPLETE(D) ∧ D ≠ Goal → ¬ (Goal,D) ∈ PREFERENCE
ENDTASK parametric design task

Fig. 5. The task ontology for parametric design.

TASK MAPPING assignent -> parametric design
ENRICH task assignment, task parametric design

x ∈ VALUE RANGE
CONSUMERS = PARAMETER
x ∈ VALUE RANGE ↔ x = RESOURCE
VALUE RESTRICTION(p) = RESOURCE

ENDTASK MAPPING assignent -> parametric design

Fig. 6. The task mapping of assignemt and parametric design.

9

state and defining partial completeness,

In general there are two possibilities to organise the connection between PSM and tasks. First, one can
define a mapping as described in Figure 8 for each task that can be solved by a PSM. Second, one can
describe a mapping between the PSM and one task and derive further mappings by expressing them as
mapping between the two tasks. In the former case, it is the responsibility of the PSMs provider
whereas in the latter case this service must be achieved by the broker itself.

PSM propose & revise
STATE ≤ SET OF THING
PREFERENCE ≤ STATE x STATE
COMPLETE ≤ STATE
PARTIAL-COMPLETENESS≤ STATE → THING
CORRECT ≤ STATE
STATE-TRANSITION ≤ STATE → STATE
PROPOSE ≤ STATE-TRANSITION
FIX≤ STATE-TRANSITION

S, S´, OUTPUT ∈ STATE
P ∈ PROPOSE
F ∈ FIX

COMPETENCE
the output is a complete, correct and optimal state

COMPLETE(OUTPUT) ∧ CORRECT(OUTPUT) ∧
¬∃ S . (COMPLETE(S) ∧ CORRECT(S) ∧ (OUTPUT,S) ∈ PREFERENCE))

KNOWLEDGE REQUIREMENTS
the propose knowledge never fails and monotonically extends the state

¬ COMPLETE(S) → ∃ P. S ⊂ P(S)
the application of a propose leads to an optimal state

¬∃ S´ . ((P(S),S´) ∈ PREFERENCE ∧
PARTIAL-COMPLETENESS(S´) = PARTIAL-COMPLETENESS(P(S)))

the fix knowledge never fails
¬ CORRECT(S) → ∃ F. CORRECT(F(S))

the application of a fix does not change the completeness of a state
PARTIAL-COMPLETENESS(F(S))= PARTIAL-COMPLETENESS(S)

the application of a fix leads to an optimal design model
¬ CORRECT(S) → ¬∃ S´ . ((F(S),S´) ∈ PREFERENCE ∧ CORRECT(S´) ∧

PARTIAL-COMPLETENESS(F(S)) = PARTIAL-COMPLETENESS(S´))
ENDPSM propose & revise

Fig. 7. The PSM ontology of propose & revise.

PSM propose & revise for parametric design task
ENRICH propose & revise, parametric design

STATE = DESIGN MODEL
PARTIAL-COMPLETENESS ≤ DESIGN MODEL → SET OF PARAMETER

PARTIAL-COMPLETENESS(D) = {p | (p,v) ∈ D}
ENDPSM propose & revise for parametric design task

Fig. 8. The PSM ontology of propose & revise for parametric design.

10

4 The Adapter Agent

The necessity of adapters in the context of reusable components is discussed in [FeG97]. The
description of an adapter maps the different terminologies of task definition, PSM, and domain model.
It has two main purposes:

• Linking the domain ontology with the task ontology, and
• linking the task ontology with the PSM ontology.5

Because it relates the three other parts together and establishes their relationship in a way that meets
the specific application problem they can be described independently and selected from libraries. Their
consistent combination and their adaptation to the specific aspects of the given application (because
they should be reusable they need to abstract from specific aspects of application problems) must be
provided by the adapter. Adapter hardwire the results of the ontological reasoning that was necessary
to establish the appropriate links between domain knowledge and PSM via a task ontology. In our
example, we have the following mapping:

COMPONENTS = EMPLOYEES

x ∈ VALUE RANGE ↔ x = PLACES

Based on this we can derive an adapter that manages the mapping of domain knowledge on terms
expected by the PSM. Propose knowledge and fix knowledge can now be provided as mappings
between assignments of employees and places.

In addition to semantic information, an adapter needs information about the syntactical structure of the
input and output that is used by the PSM. This syntactical information must be used to derive front-
ends of the client agent that are used to communicate with the client. In the case, that large domain
knowledge already exists and should be reused, the adapter must realize the mapping between the
different syntactical conventions of domain and PSM.

5 Related Work

The general architecture of our broker system was taken from the MeDoc [BDG97], a German project
on developing a broker for heterogeneous, distributed information sources in the internet. Our approach
differs in regard to the core of the broker that is realized by ontological reasoning. The idea of using
ontologies to annotate information in the WWW is part of the SHOE-approach [LSR96], [LSR+97].
HTML pages are annotated via ontologies to support information retrieval based on semantic
information. We extend their idea for annotating software components (i.e., PSMs) that provide not
only information but inference power.

Our adapters deal with two types of mappings: mapping domain knowledge on generic task definitions
and mapping task definitions on PSM-specific terms. The importance of these mappings lead us to
introduce this new modelling construct in addition to domain, tasks, and PSMs. Most other approaches
deal with these mappings only as a side-aspect and focus on connecting domain and PSM directly (cf.
[FvH94], [GTR+94]). Exceptions are [BBH96] and [SEG+96]: The former introduce the idea of de-
coupling PSMs and task and the latter discuss a coupling mechanism between subtasks and PSMs.
Adapters generalizes these approaches.

Mapping input and output of a PSM via a task on domain-specific data and knowledge can be
interpreted as a mapping between different data schemas. The necessity of adapters or mediators

5. Therefore, an adapter allows domain and task-independent characterization and implementation of PSMs (cf. [BBH96]).

11

[Wie92] necessary to combine heterogeneous information is well-know in the database area. E.g. in the
project TSIMMUS [CGH+94] mediators are provided to integrate heterogeneous information sources.
An implementation of such a mediator can automatically be derived from its specification in the
Mediator Specification Language. We will try to use this and similar ideas to automatically derive
adapters from ontological information.

CORBA [OHE96] is a standard specification that describes how software components can interact
across networks, languages and platforms, [GSM96] investigate the usefulness of applying CORBA to
knowledge-based systems. CORBA can be used to define a standard of the syntactical form in which
components can interact. Therefore, it covers one aspect that is handled by our adapters. However, it
does not provide means to specify the semantics of building blocks and its data exchange nor does it
help to find and adapt components.

Finally, the task ontologies we use to intermediate between domain knowledge and PSMs describe
generic classes of problems (types) as assignment, parametric design, skeletal planning, model-based
diagnosis etc. Work in requirements engineering also aims for such generic problem classes used to
capture functional and non-functional requirements on a software artefact. [SuM94], [Mai96]
distinguish 13 top-level object systems models: resource returning, resource supplying, item
composition, etc. This top-level models become hierarchical refined through five levels each of them
adding specific aspects to such a model. It looks quite promising for future work to compare and
combine both lines of research.

6 Conclusions

We present the architecture of an intelligent broker that should bring PSM-reuse to work. The broker
allows the application of PSM via the WWW. Ontological reasoning is used to select an appropriate
PSM for a given problem and to derive the necessary mappings between domain-specific and PSM-
specific terms.

Currently, we investigate several approaches to ontological modelling and reasoning (i.e., CARIN
[LeR96], FLORID [KLW95], LOOM [Mac90], Ontolingua [FFR96], SHOE [LSR96]). However, our
ontologies are not simple taxonomies but means to specify the competence and the assumptions of
PSMs. Besides proving language support, developing ontologies of PSM and task-ontologies that are
used to negotiate between customers and PSMs are the goals of our current research. Interesting
approaches in this area is the task ontology of diagnostic task in [Tei97] and the PSM-ontology of
parametric design in [MoZ96].

Acknowledgement. I would like to thank Richard Benjamins, Michael Erdman,
Rudi Studer and Steve Fickas for helpful and inspiring discussions.

7 References

[AFS96] J. Angele, D. Fensel, and R. Studer: Domain and Task Modelling in MIKE. In A. Sutcliffe et al. (eds.),
Domain Knowledge for Interactive System Design, Chapman & Hall, 1996.

[BBH96] P. Beys, R. Benjamins, and G. van Heijst: Remedying the Reusability-Usability Tradeoff for Problem-
solving Methods. In Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW´96), Banff, Canada, November 9-14, 1996.

[Ben95] R. Benjamins: Problem Solving Methods for Diagnosis And Their Role in Knowledge Acquisition,

12

International Journal of Expert Systems: Research and Application, 8(2):93—120, 1995.
[BFS96] R. Benjamins, D. Fensel, and R. Straatman: Assumptions of Problem-Solving Methods and Their Role

in Knowledge Engineering. In Proceedings of the 12. European Conference on Artificial Intelligence (ECAI-
96), Budapest, August 12-16, 1996.

[BDG97] D. Boles, M. Dreger, and K. Großjohann: Konzeption eines Informationsvermittlungssystems für
heterogene, verteilte Informationsquellen im Internet, EMISA, no 1, 1997. http://medoc.informatik.tu-
muenchen.de/deutsch/projdescr/medocinfo.html

[BV94] J. Breuker and W. Van de Velde (eds.) (1994): The CommonKADS Library for Expertise Modelling, IOS
Press, Amsterdam, The Netherlands.

[CGH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J.
Widom: The TSIMMIS Project: Integration of Heterogeneous Information Sources". In Proceedings of IPSJ
Conference, pp. 7-18, Tokyo, Japan, October 1994. http://www-db.stanford.edu/tsimmis.

[CJS92] B. Chandrasekaran, T.R. Johnson, and J. W. Smith: Task Structure Analysis for Knowledge Modeling,
Communications of the ACM, 35(9): 124—137, 1992.

[DFM??] S. Decker, D. Fensel, E. Motta, and Z. Zrahal: A Formalized Task Ontology for Parametric Design, in
preparation.

[EST+95] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta, and M. A. Musen: Task Modeling with Reusable
Problem-Solving Methods, Artificial Intelligence, 79(2):293—326, 1995.

[FeG97] D. Fensel and R. Groenboom: Specifying Knowledge-Based Systems with Reusable Components. In
Proceedings of the 9th International Conference on Software Engineering & Knowledge Engineering
(SEKE-97), Madrid, Spain, June 18-20, 1997.

[FeS96] D. Fensel und R. Straatman: The Essence of Problem-Solving Methods: Making Assumptions for
Efficiency Reasons. In N. Shadbolt et al. (eds.), Advances in Knowledge Acquisiiton, Lecture Notes in
Artificial Intelligence (LNAI), no 1076, Springer-Verlag, Berlin, 1996.

[FeS??a] D. Fensel und A. Schoenegge: Assumption Hunting as Developing Method for Problem-Solving
Methods, submitted.

[FeS??b] D. Fensel und A. Schoenegge: Specifying and Verifying Knowledge-Based Systems with KIV,
submitted.

[FvH94] D. Fensel and F. van Harmelen: A Comparison of Languages which Operationalize and Formalize
KADS Models of Expertise, The Knowledge Engineering Review, 9(2), 1994.

[FFR96] A. Farquhar, R. Fickas, and J. Rice: The Ontolingua Server: a Tool for Collaborative Ontology
Construction, Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW´95), Banff, Canada, November 9th - November 14th, 1996. http://ontolingua.stanford.edu/.

[FMF+94] T. Finin, D. McKay, R. Fritzson, and R. McEntire: KQML: An Information and Knowledge Exchange
Protocol. In Kazuhiro Fuchi and Toshio Yokoi (Ed.), Knowledge Building and Knowledge Sharing , Ohmsha
and IOS Press, 1994. http://www.cs.umbc.edu/kqml.

[GSM96] J. H. Gennari, A. R. Stein, and M. A. Musen: Reuse For Knowledge-Based Systems and COBRA
Components. In Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW´95), Banff, Canada, November 9th - November 14th, 1996.

[GTR+94] J. H. Genanari, S. W. Tu, T. E. Rothenfluh, and M. A. Musen: Mapping Domains to Methods in
Support Reuse, International Journal on Human-Computer Studies (IJHCS), 41:399-424, 1994.

[KLW95] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and Frame-Based
Languages, Journal of the ACM, vol 42, 1995. http://www.informatik.uni-freiburg.de:80/~dbis/flsys/.

[LeR96] A. Y. Levy and M.-C. Rousset : CARIN: A Representation Language Combining Horn Rules and
Description Logics. In Proceedings of the 12th European Conference on AI (ECAI-96), Budapest, Hungary,
August 11-16, 1996.

[Lin94] M. Linster (ed.): Sisyphus ´91/92: Models of Problem Solving, International Journal of Human
Computer Studies, 40(3), 1994.

[LSR96] S. Luke, L. Spector, and D. Rager: Ontology-Based Knowledge Discovery on the World-Wide Web.
Proceedings of the Workshop on Internet-based Information Systems, AAAI-96 (Portland, Oregon),
1996.http://www.cs.umd.edu/projects/plus/SHOE/.

[LSR+97] S. Luke, L. Spector, D. Rager, and J. Hendler: Ontology-based Web Agents. In Proceedings of First
International Conference on Autonomous Agents 1997, AA-97. http://www.cs.umd.edu/projects/plus/
SHOE/.

[Mac90] MacGregor: LOOM Users Manual, ISI/WP-22, USC/Information Sciences Institute, 1990. http://
www.isi.edu:80/isd/LOOM/.

13

[Mai96] N. A. M. Maiden: Acquiring Requirements: A Domain-specific Approach. In A. Sutcliffe et al. (eds.),
Domain Knowledge for Interactive System Design, Chapman & Hall, 1996.

[Mar88] S. Marcus (ed.). Automating Knowledge Acquisition for Experts Systems, Kluwer Academic Publisher,
Boston, 1988.

[MoZ96] E. Motta and Z. Zdrahal: Parametric Design Problem Solving. In Proceedings of the 10th Banff
Knowledge Acquisition for Knowledge-Based System Workshop (KAW´95), Banff, Canada, November 9th -
November 14th, 1996.

[Mus89] M. A. Musen: Automated Generation of Model-Based Knowledge-Acquisition Tools, Morgan
Kaufmann Publisher, 1989.

[Neb96] B. Nebel: Artificial intelligence: A Computational Perspective. In G. Brewka (ed.), Essentials in
Knowledge Representation, Springer-Verlag, 1996.

[OHE96] R. Orfali, D. Harkey, and J. Edwars: The Essential Distributed Objects Survival Guide, John Wiley &
Sons, New York, 1996. http://www.acl.lanl.gov/CORBA/.

[Pup93] F. Puppe: Systematic Introduction to Expert Systems: Knowledge Representation and Problem-Solving
Methods, Springer-Verlag, Berlin, 1993.

[SEG+96] R. Studer, H. Eriksson, J. Gennari, S. Tu, D. Fensel, and M. Musen: Ontologies and the Configuration
of Problem-Solving Methods. In Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based
System Workshop (KAW´96), Banff, Canada, November 9-14, 1996.

[Ste90] L. Steels: Components of Expertise, AI Magazine, 11(2), 1990.
[SWA+94] A. TH. Schreiber, B. Wielinga, J. M. Akkermans, W. Van De Velde, and R. de Hoog:

CommonKADS. A Comprehensive Methodology for KBS Development, IEEE Expert, 9(6):28—37, 1994.
[SuM94] A. G. Sutcliffe and N. A. M. Maiden: Domain Modelling for Resue. In Proceedings of the 3rd

International Conference on Software Reuse, Rio de Janeiro, Brazil, November 1-4, 1994.
[Tei97] A. ten Teije: Automated Configuration of Problem Solving Methods in Diagnosis, PhD thesis, University

of Amsterdam, 1997.
[THW+93] P. Terpstra, G. van Heijst, B. Wielinga, and N. Shadtbolt: Knowledge Acquisition Support Through

Generalised Directive Models. In M. David et al. (eds.): Second Generation Expert Systems, Springer-Verlag,
1993.

[Wie92] G Wiederhold: Mediators in the Architecture of Future Information Systems, IEEE Computer, 25(3):38-
49, 1992.

