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SUMMARY

ZOOM*UserViews presents a model of provenance for scientific workflows that is simple,
generic, and yet sufficiently expressive to answer questions of data and step provenance
that have been encountered in a large variety of scientific case studies. In addition, ZOOM
builds on the concept of composite step-classes – or sub-workflows – which is present in
many scientific workflow systems to develop a notion of user views. This paper discusses
the design and implementation of ZOOM in the context of the queries posed by the
provenance challenge, and shows how user views affect the level of granularity at which
provenance information can be seen and reasoned about.
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1. Introduction

Scientific workflow management systems (e.g. [17], [15], [10], [9]) have become increasingly
popular as a way of specifying and implementing large-scale in-silico experiments. Such
systems differ from business-oriented workflow systems in the focus on data – e.g. sequences,
phylogenetic trees, and proteins – and its transformation into hypotheses and knowledge [18]. In
most scientific workflow systems, a workflow can be graphically designed by chaining together
bioinformatics tasks (e.g. downloading sequences, aligning them). Tasks can also be grouped
together to form composite tasks. Composite tasks are an important mechanism for abstraction,
privacy, and reuse between workflows.
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Due to the large amount of intermediate and final data products generated in scientific
workflows and the need for reproducible results, provenance has become of paramount
importance, as evidenced by recent specialized workshops and surveys [18] on the subject. It has
also received attention within the database community, and several models of reasoning (e.g.
“why” and “where”) over algebraic query expressions have been proposed [5, 6, 20]. However,
tracking provenance in scientific workflows raises new and different challenges. First, since the
operators in workflows are complex bioinformatic tasks, they are “black boxes”; fine grained
algebraic reasoning cannot be performed. Second, composite tasks in scientific workflows may
allow users to zoom into a box to see a sub-workflow. Composite tasks can therefore be used
to vary the granularity at which provenance can be seen and reasoned about.

To address the problem of data provenance, most scientific workflow systems record
metadata related to provenance [22] and/or develop a logging mechanism for tracking
information and dependencies between data [4]. However, no generic model has been developed
to define the meaning of provenance and take into account the composite structure of scientific
workflows. In ZOOM*UserViews (ZOOM, for short), we develop a simple model that is
sufficiently expressive to answer queries of provenance encountered in case studies, and which
develops a notion of user views based on composite tasks.

In this paper, we discuss the design and implementation of ZOOM in the context of the
queries posed by the provenance challenge (section 2). Section 3 demonstrates how ZOOM
user views can be applied to a variation of the provenance challenge workflow to reason about
provenance at different levels of abstraction.

2. Modeling the challenge workflow and answering queries in ZOOM

Our prototype is implemented in Oracle 10.g using an object layer together with a user interface
(Java/JDBC component). In the following, we describe how we stored simulated traces of the
challenge workflow run in our model. An ER diagram of the relational data model is available
at the challenge web site [1].

We distinguish between the (static) specification of a workflow and its (dynamic) execution.
A workflow specification consists of step-classes that represent the bioinformatics tasks to be
performed, as well as data and control flow between those classes (which we will ignore for
now). In contrast, an execution of a workflow is a partial order of steps (also called events),
each of which is an instance of a step-class and has a set of input and output data objects. As
an example, in the challenge workflow the “reslice” step-class has four instances which are the
steps “5.reslice” ... “8.reslice”. We make the assumption that in each workflow, each relevant
object for provenance (e.g. step-classes, steps, and data items) has a unique identifier.

Our model stores both the specification and the executions of a workflow, as well as the
relationship between those two. Workflow execution information can be extracted from the
log of a workflow run. In particular, input(step, dataId, ts) gives information about the
input to each step as well as the timestamp of input (read) events; output(step, dataId, ts)
stores the same information about output (write) events. For instance, input(2,3,8/8/2006),
input(2,4,8/8/2006), input(2,9,8/8/2006), and input(2,10,8/8/2006) state that step 2
(2.align warp) took as input data whose ids are 3 (Anatomy Image2), 4 (Anatomy Header2),
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9 (Reference Image), and 10 (Reference Header). Each input in the example was taken on
the same date, 8/8/2006∗. Also, step 10 (10.slicer) produced one output with a dataId of 25
(Atlas X Slice) on 08/17/2006 (output(10,25,08/17/2006)). Details of which step-class a step
execution is an instance of and the time at which it began are stored in instanceOf (step,
step-class, ts). For example, steps 1 to 4 are executions of the step-class “align warp”. Note
that the integer ids of steps do not indicate precedence; in particular, steps 1-4 are executed
in parallel.

Metadata and annotations on data and parameters are also stored. For example, table
data(dataId, name, type) relates the identifier of a data item to its name and its type, e.g.
data(1,Anatomy Image1,Anatomy Image) states that data with id 1 is named “Anatomy
Image1” and has a type “Anatomy Image”. Annotations are stored as attribute-value pairs
associated with data items in table dataAttributes, e.g. dataAttributes(1, center, UChicago)
states that the attribute “center” has value “UChicago” for the data item whose id is 1. The
association between each step and its parameters as well as annotations of these parameters
are stored using table stepParam; for example, it is possible to record that the step whose id
is 1 takes a nonlinear (linear=false), 12th order (order=12) parameter, whose model is 1365
(model=1365).

To answer the challenge queries, we also introduced table stageInstance(step, stage) which
gives all the steps that ran for a given stage (e.g., steps 1 to 4 are in stage 1). This table is the
only one dedicated to the challenge; all the other tables are part of the generic ZOOM model.

To simplify the provenance queries, we created a view Process, which represents details of
each execution including the steps, their corresponding step-class, inputs, outputs, and starting
time. For example, Process(13, convert, 25, Atlas X Slice, 28, Atlas X Graphic, 8/20/2006)
states that step 13 is an execution of the step-class convert, takes as input data with id 25
(Atlas X Slice), was executed on 8/20/2006, and produces as output data with id 28 (Atlas
X Graphic). Note that if a given step takes several inputs and/or produces several outputs
then the Process view will contain several rows having the same step id. Output data depends
only on data read by the step before the write event occurs. For example, if O is a data item
produced by step S at time t2, then O depends only on data items i such that input(S,i,t1),
output(S,O,t2) and t1 ≤ t2.

Using these tables, we expressed the challenge queries. Code for all queries is available at
the challenge web site [1]; most of the queries use an extension of the SQL-Oracle transitive
closure operator that will be explained shortly.

Query 1 can be expressed as follows; the result is visualized as shown in Figure 1:

SELECT DISTINCT step, step-class, input, output, MARKDATA(step, input)
FROM Process

START WITH output = (SELECT dataId FROM data WHERE name = ’Atlas X Graphic’)
CONNECT BY PRIOR input = output AND ISMARKED(step, input)=0

ORDER BY step;

∗For conciseness, we use dates without minutes and seconds in our simulation of the workflow; we could also
have used full timestamps.
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Figure 1. Results obtained for Query 1: the resulting provenance information is shown as a graph.
Squared shapes represent steps; rounded shapes represent data.

This SQL query focuses on the Process table. The subquery first searches for the id of the
data item named “Atlas X Graphic” (Where clause). This id is then the entry point (Start
With) of the main recursive query that will search for the data used as input to produce it.
These inputs are then considered as outputs for which input are searched (CONNECT BY
PRIOR input = output). The recursive procedure ends when the data id considered is a user
input (i.e. a data that was not produced using any other data).

Since the transitive closure operator, CONNECT BY PRIOR, provided by Oracle is
developed for hierarchies and does not work for arbitrary DAGs, we extended this operator by
creating two stored procedures: MARKDATA to mark each node seen in the recursion, and
ISMARKED to stop the recursion if the node has already been seen (e.g. two steps with a
common step ancestor).
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Query 2 is similar, but uses MINUS to restrict provenance information to occur after given
step (softmean); Query 3 makes use of the stageInstance table to focus on stages 3, 4 and 5 of
the process; query 4 uses a join between Process and stepParam, while queries 5, 8, and 9 use
joins between Process and dataAttributes.

The semantics of Query 7, which asks for the difference between two workflow executions,
is a topic for future research. For the challenge workflow run in which only one step-class has
been modified and the workflow specification appears linear, the query can be answered by
simply using MINUS. However, it is not clear what the question means absent a workflow
specification and in the presence of cycles in the specification.

3. User views

The main contribution of the ZOOM*UserViews model is to develop a notion of user views
based on composite step-classes. There are several reasons why composite step-classes are
useful in workflows. First, they can be used to hide complexity and allow users to focus on
a higher level of abstraction. For example, users may wish to focus on biologically relevant
step-classes and hide step-classes which focus on formatting. Second, composite step-classes
can represent authorization levels; users without the appropriate clearance level would not be
allowed to see the details of a composite step-class.

A user view is then defined as follows [8]: Given a workflow specification S, a user view U is
a partition of atomic step-classes in S. Note that two composite step-classes (partitions) in U
cannot overlap in its member atomic step-classes, and that each atomic step-class in S must
be a member of some composite step-class in U.

As an example, consider Figure 2 in which three user views are indicated by placing boxes
around portions of the workflow execution. User view {Box3} (which we will call “UBlackBox”)
sees the entire workflow as one composite step. User view {Box1, softmean, Box2} (which we
will call “uBio”) hides details of the align warp and reslice steps (Box1) as well as slicer and
convert (Box2); however step-class softmean can be observed. In the lowest level user view,
{align warp, reslice, softmean, slicer convert}, all step-classes can be observed; we call this
user view “uAdmin”.

User views affect what data a user can see, as well as the provenance of visible data. For
example, data item 15 (Resliced Image 1) cannot be seen in uBlackBox since it is hidden
in Box3. In uBio, the immediate data provenance of 15 will be 1 (Anatomy Image1) and
immediate step provenance will be stepBox1-1 (a composite execution of Box1 induced by
steps 1.align warp and 5.reslice). In uAdmin, the immediate data provenance of 15 will be 11
(Warp Params1) and immediate step provenance 5.reslice.

To model user views, we must address their definition at the the specification level as well
as the implications for provenance at the execution level. At the specification level, table
immContains captures the immediate containment of step-classes; view contains is the closure
of immContains. For example, immContains(box1,align warp) and immContains(box3,box1)
express the facts that composite step-class “box1” includes step-class align warp, and
composite step-class “box3” contains composite step-class “box1”. Table userView(usr,
stepClass) indicates the lowest step-classes that a user can see. For the example in Figure
2, we get the following:
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Figure 2. Variation of the challenge workflow with user views uBlackBox and UBio indicated. For ease
of readability, steps ids have been indicated under brackets.

USR STEPCLASS | USR STEPCLASS
-------------------------- | ---------------------------
uBlackBox box3 | uAdmin align_warp
uBio box1 | uAdmin reslice
uBio softmean | uAdmin reslice
uBio box2 | uAdmin softmean
uAdmin convert | uAdmin slicer
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At the execution level, composite steps are induced for composite step-classes in each user
view and input and output relations are calculated for composite steps. The input to a
composite step is any input to a member step which is not the output of another member
step; the output of a composite step is any output of a member step which is not input to
another member step. Thus cInput (cOutput) stores information about inputs (outputs) to a
composite step and the time at which the read (write) events occurred.

Intuitively, determining composite steps is done as follows: For any step S in the execution
graph that is not yet in a composite step, create a composite step C (a new instance of the
composite class of S) and add to C all steps S′ such that S′ has an edge to or from any node
of C and has the same composite class of S. (The complete algorithm is beyond the scope of
this paper.)

In our example, four composite steps would be created for Box1 (stepBox1-1 ... stepBox1-4),
and three for Box2 (stepBox2-1 ... stepBox2-3). StepBox1-1 consists of steps 1 and 5; stepBox2-
1 takes data id 23 (Atlas Image) and data id 24 (Atlas Header) as inputs (cInput(stepBox2-1,
23, 8/17/2006), cInput(stepBox2-1, 24, 8/17/2006)) and produces data id 28 (Atlas Graphic
X) on 08/20/2006 as output (cOutput(stepBox2-1, 28, 8/20/2006)).

Using cInput and cOutput, we define the view uProcess which gives details of each execution
a user can see (analogous to Process in the previous section).

To illustrate the effect of user views on provenance, consider the following query: “What is
the step and data provenance of Resliced Image1 (id 15)?” This can be expressed as follows,
where $userv can be replaced by any user view in the system:

SELECT upc.*, MARKDATA(step, input)
FROM uProcess upc
WHERE usr = $userv

START WITH outputName = ’Resliced Image1’
CONNECT BY PRIOR upc.input = upc.output

AND ISMARKED(step, input)=0;

First, consider the case where $userv=”uAdmin”. The answer obtained are those obtained
without the benefit of user views (see Figure 3 (A)).

Now, consider the case where $userv=”uBio”. The following result is obtained, visualized
in Figure 3 (B).

USR STEP STEPCLASS INPUT INPUTNAME OUTPUT OUTPUTNAME TIME
-----------------------------------------------------------------------------------------
uBio stepBox1-1 box1 1 Anatomy Image1 15 Resliced Image1 8/7/2006
uBio stepBox1-1 box1 10 Reference Header 15 Resliced Image1 8/7/2006
uBio stepBox1-1 box1 2 Anatomy Header1 15 Resliced Image1 8/7/2006
uBio stepBox1-1 box1 9 Reference Image 15 Resliced Image1 8/7/2006

Note that uAdmin can see that data id 11 (Warp Params 1) is part of the provenance while
uBio cannot see it.

Finally, when $userv=”uBlackBox” the result relation is empty; the user is not entitled to
see any information about data that is not in his user view.
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(A) (B)

Figure 3. Results obtained for the query considering uAdmin (A) and uBio (B) (also available at the
challenge web site [1]).

4. Discussion and Conclusion

This paper discusses how ZOOM addresses the Provenance challenge queries, and introduces
a variation of the workflow and provenance query to illustrate user views.

The ZOOM model captures all necessary information for reasoning about provenance
generated by the workflow systems which participated in the Provenance Challenge, e.g.,
Kepler (teams COMAD [3] and RWS [14]), Taverna (myGrid team [21]), Pegasus/Wings [12],
Redux [2], Karma [19], and Chimera (team UChicago/VDL [7]). Systems like ES3 [11] and JP
[13], provide approaches based on operating systems, and can record provenance at very low
levels (OS-/job-oriented). Since these systems provide a log with input/output/timestamps,
our model is able to take into account the provenance information they generate.

The user view approach followed in this paper can be exploited by any system which allows
the user to compose tasks, as done in Kepler (composite actors) and Taverna/myGrid (nested
workflow processors/knowledge view model [22]).

We summarize the key points of our system using the system matrix defined in the editorial
[16].

Characteristics of the ZOOM provenance system: ZOOM provides a model of provenance for
scientific workflows, which relies on minimal log information: start step events, input (read)
events, output (write) events, and the time at which these events occurred. ZOOM is thus
technology independent; no specific workflow system was used. However, the simulated
run provided was used to illustrate the technique. Provenance is currently represented using
a relational framework (RDBMS) and the query language is SQL extended with transitive
closure. The prototype was implemented under Oracle 10.g and Java. The purpose of ZOOM
is both to store (S) provenance information and to query (Q) it.

Properties of Provenance Representation in ZOOM: The causal graph illustrating the
provenance of a data product is constructed using the base tables input and output, and
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their relationship with other tables in the schema. We assume that unique ids are assigned
to every provenance relevant object.

As for the queries: recursive queries expressing the transitive closure on inputs and outputs
are used, and both the flow of data and steps (that is, both data and events) can be queried.
It is worth noticing that although it is always possible to ask queries about annotations on
data or on steps (e.g. type of parameters, metadata), these queries were not considered as core
provenance queries in ZOOM.

Last but not least, ZOOM provides user views allowing provenance information to be
calculated at different levels of granularity. Only visible and necessary data (and steps) are
returned.

The model presented in this paper can manage much more complex workflows than the
workflow of the first challenge, for example, workflows with cycles in their definition. In complex
workflows, the benefit of user views is even more apparent: it allows the intricate relationships
of data produced and consumed in cycles to be hidden, providing the user with a much simpler
understanding of the execution. Part of our ongoing work on ZOOM is to demonstrate the
benefit of user views in complex scientific workflows encountered in a wide variety real-world
examples.
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3. S. Bowers, T. McPhillips, and B. Ludäscher. Provenance in collection-oriented scientific workflows.

Concurrency and Computation: Practice and Experience, 2007.
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