
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2007; 0:1–10 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Automatic capture and

reconstruction of

computational provenance

James Frew∗, Dominic Metzger, Peter Slaughter

Donald Bren School of Environmental Science and Management,
University of California, Santa Barbara, CA 93106-5131, USA

SUMMARY

The Earth System Science Server (ES3) project is developing a local infrastructure for
managing Earth science data products derived from satellite remote sensing. By “local,”
we mean the infrastructure that a scientist uses to manage the creation and dissemination
of her own data products, particularly those that are constantly incorporating corrections
or improvements based on the scientist’s own research. Therefore, in addition to being
robust and capacious enough to support public access, ES3 is intended to be flexible
enough to manage the idiosyncratic computing ensembles that typify scientific research.

Instead of specifying provenance explicitly with a workflow model, ES3 extracts
provenance information automatically from arbitrary applications by monitoring their
interactions with their execution environment. These interactions (arguments, file
I/O, system calls, etc.) are logged to the ES3 database, which assembles them into
provenance graphs. These graphs resemble workflow specifications, but are really reports
- they describe what actually happened, as opposed to what was requested. The ES3
database supports forward and backward navigation through provenance graphs (i.e.
ancestor/descendant queries), as well as graph retrieval.

key words: ES3, instrumentation, lineage, passive, provenance, transparency

1. INTRODUCTION

Scientists are increasingly being called upon to publish data as well as conclusions [1].
Computational science, in particular, often involves the creation of data products as a primary
goal, rather than simply a means to an end. The “value added” in these products is primarily

∗Correspondence to: frew@bren.ucsb.edu
Contract/grant sponsor: National Aeronautics and Space Administration; contract/grant number:
NNG04GC52A and NNG04GE66G

Received 29 November 2006
Copyright c© 2007 John Wiley & Sons, Ltd. Revised 08 March 2007



2 J. FREW ET AL.

a function of their embodying the scientists most current understanding of the problem. The
scientist is therefore motivated to make the transition from experimental to operational (i.e.,
disseminated) data product as seamless as possible.

Decades of experience with developers of data products based on satellite remote sensing
of snow cover [2] and ocean color [3] have convinced us that most practicing scientists are
extremely reluctant to assume the burdens of operational data publication. The primary
reasons for this are:

• Scientists are usually funded to do research, not to maintain operational data
dissemination systems. Computing infrastructures built to support research and
development are frequently ill suited to publication and dissemination.

• Computational earth science is frequently conducted in advanced analysis environments
(e.g., software packages) that scientists spend a great deal of time mastering and
extending, and are therefore reluctant to abandon for a “production” computing
environment.

The Earth System Science Server (ES3) directly addresses these challenges, by providing
a local (to the scientist) computing infrastructure that seamlessly supports both exploratory
computational science (specifically, scientific algorithm development) and operational product
generation and dissemination (specifically, web access to low-cost, scalable computing and
storage servers.) Common to both of these activities is the acquisition, maintenance, and
publication of metadata about the evolving algorithms and resulting products. This paper
describes the ES3 solution to capturing, reconstructing, and visualizing provenance metadata.

2. PROVENANCE IN ES3

2.1. Strategy

The primary challenge posed to provenance management by the ES3 environment is the
requirement that the scientist be allowed to use whatever software tools she is most comfortable
with. ES3 therefore adopts a novel approach to provenance capture and management: rather
than requiring that scientists express their algorithms, procedures, or workflows using a
specific language, system, or standard, ES3 instead transparently captures provenance-related
information at execution time, from whatever analysis software the scientist happens to be
using. The captured information is then assembled post hoc into a provenance graph (i.e.,
linked inputs, processes, and outputs.)

Broadly speaking, there are three strategies available for capturing provenance at execution
time [4]:

1. Passive monitoring: This strategy entails tracing a processs interaction with its
environment. We call this “passive” since it involves no modifications to either the process
or its execution environment. All provenance relationships must be deduced post hoc.

2. Overriding: This strategy entails replacing portions of a processs execution environment
(e.g., shared libraries) with instrumented versions that explicitly capture provenance

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 0:1–10
Prepared using cpeauth.cls



ES3 AUTOMATIC PROVENANCE 3

Figure 1. ES3 Components

information. As in passive monitoring, no modification of the science process itself
is required, although detailed knowledge of (and access to) the science execution
environment is required.

3. Instrumentation: This strategy entails inserting specific provenance capture
instructions into the science process. Detailed knowledge of (and access to) the science
process source code is required.

The strategies are ranked in order of both increasing intrusiveness into the scientific
programming environment, and increasing selectivity as to the information acquired (e.g.,
everything else being equal, instrumentation is likely to acquire less extraneous information
than passive monitoring.) The ES3 provenance system utilizes all of these strategies,
individually or in combination, depending on the specific science codes being executed and
the degree of access available.

2.2. Architecture and Implementation

Provenance in ES3 is managed by two components: the Probulator and the ES3 Core (Figure
1.)

The ES3 Probulator is designed to non-intrusively monitor the execution of complex scientific
applications. All operations of the Probulator are completely transparent to ES3 users, and
the default mode of operation requires no modification whatsoever of existing codes.

The Probulator comprises two applications, the Logger and the Transmitter. Both
applications are user-mode non-privileged processes that are (usually) started automatically.

The Logger automatically instruments, monitors, and logs the execution of targeted
programs and their interactions with their environment (files, parameters, system calls, etc.)
“Plugins” adapt the Logger to different scientific processing environments. Currently two
plugins are provided:

1. The default plugin uses system call tracing to intercept and log a subset of the probulated
process’s system calls; e.g.:

...

22636 1157750059.747511 execve("/AIR5.2.5/bin/align_warp", ...

22636 1157750059.810691 open("/etc/ld.so.cache", O_RDONLY) = 3

22636 1157750059.811162 open("/lib/libm.so.6", O_RDONLY) = 3

22636 1157750059.811638 open("/lib/libc.so.6", O_RDONLY) = 3

22636 1157750059.813693 open("anatomy1.hdr", O_RDONLY) = 3

22636 1157750059.814905 open("reference.hdr", O_RDONLY) = 3

...

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 0:1–10
Prepared using cpeauth.cls



4 J. FREW ET AL.

Since system call traces can be voluminous, a default configuration file specifies system
call patterns (e.g., shared library accesses) that can safely be ignored. This plugin
currently works on Linux (and should work on any UNIX-like system that supports
the strace facility.) When using this plugin, the Logger is invoked as a Linux command
that spawns a traced shell to run the probulated process, and collects the shell’s trace
information.

2. A plugin for the IDL [5] analysis environment preprocesses IDL scripts to insert ES3
specific logging information, and to replace calls to certain IDL built-in functions with
calls to instrumented ES3 equivalents. Although this plugin does modify the targeted
application code, it does so transparently and reversibly – no user intervention is required
beyond setting a flag in an environment variable to enable or disable probulation. When
using this plugin, the Logger is invoked as a co-process by the user’s IDL startup routine.

Upon termination of a Logger session (or on specific request), Logger log files:

...

<exec time="20060908T211419.747511Z" routine="/AIR5.2.5/bin/align_warp"

pid="22636">

<io>

<pipe read="true" id="std-in"/>

<pipe write="true" id="std-out"/>

<pipe write="true" id="std-err"/>

<file read="true">/etc/ld.so.cache</file>

<file read="true">/lib/libm.so.6</file>

<file read="true">/lib/libc.so.6</file>

<file read="true">/home/es3/provenance_challenge/anatomy1.hdr</file>

<file read="true">/home/es3/provenance_challenge/reference.hdr</file>

</io>

...

are read by the Transmitter, which:

1. assigns a universally unique identifier (UUID) to every provenance-relevant object (file
or process) referenced in the log file;

2. converts the plugin-specific log files into standard ES3 execution reports; and
3. sends these reports as XML messages:

...

<ES3Request type="registerFile">

<file>

<workflowUuid>5f04fceb-4691-4c8c-b5c3-96b9449eccf0</workflowUuid>

<domain name="Local file system">

<identifier>/home/es3/provenance_challenge/anatomy1.hdr</identifier>

</domain>

<uuid>c9ba5bd5-98a4-437c-af12-dd64f42fe57d</uuid>

</file>

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 0:1–10
Prepared using cpeauth.cls



ES3 AUTOMATIC PROVENANCE 5

</ES3Request>

...

via a web service interface to the ES3 Core.

The ES3 Core decomposes the execution reports into object references and linkages between
objects, using the Transmitter-supplied UUIDs as primary keys. This allows the Core to
reconstruct the provenance graph at arbitrary starting points, forward and backward in time,
by following the UUID references. The Core can also use file name, process name, and argument
information captured by the Probulator to map between UUIDs and external names, allowing
ES3 users to form queries in terms of objects they’re familiar with.

2.3. ES3 Contributions to Provenance Challenge

• Execution Environment : ES3 can capture the provenance of any arbitrary sequence of
Linux processes. For the challenge, provenance information was captured by passive
monitoring: the bash shell executing the workflow had system call tracing enabled and
redirected to the appropriate Logger plugin.

• Representation Technology: ES3 represents provenance as XML documents†. The ES3
Core stores provenance information in an XML database.

• Query Language: The ES3 Core implements a set of custom XML provenance requests
that include XQuery constraint expressions.

• Research Emphasis : ES3 is focuses on recording, storing, and querying provenance
information. ES3 is not an execution environment.

• Challenge Implementation: We executed the challenge workflow shell script directly,
without any modifications.

• Includes Workflow Representations : ES3 is not a workflow environment; any workflow
information is deduced post hoc.

• Data Derivation vs. Causal Flow of Events : ES3 extracts provenance information from
event traces, which in most cases include all relevant data accesses, so the captured
provenance can be viewed from either perspective.

• Annotations : The Probulator used for the challenge did not handle annotations. (We
discuss this further in Section 4.)

• Time: The Probulator uses local (system clock) time information to order the execution
trace information, and the time information is passed on to the ES3 Core and may be
queried.

• Naming: The ES3 Core constructs lineage graphs by matching up UUIDs inserted into
the provenance data by the Transmitter.

• Tracked data, Granularity: Since ES3 tracks provenance at the system call level, it is
theoretically capable of recording the provenance of individual data bytes. Currently,
the granularity is restricted to file open/close and process execute/exit events.

†RELAX NG schema: http://eil.bren.ucsb.edu/ES3/SecondProvenanceChallenge/getLineage-schema.rng

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 0:1–10
Prepared using cpeauth.cls



6 J. FREW ET AL.

Figure 2. Provenance Challenge workflow reassembled by ES3

• Abstraction Mechanisms : ES3’s notion of a “workflow” corresponds to a single execution
trace (e.g. of a shell script.) Otherwise, ES3’s abstractions correspond directly to files
and processes.

2.4. Comparison with other Provenance Challenge approaches

Most approaches represented in the Provenance Challenge [6] were based on workflow systems
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. These systems all employ a prescriptive approach to
provenance: all computations are described by a workflow model that is semantically, and in
many cases syntactically, close or identical to the provenance graph. Put another way, most of
the work involved in provenance collection is done “up front,” when the workflow is specified.
Collection of instance-level provenance information can also be simplified, by building it into
the workflow environment.

The common disadvantage of the workflow approaches is the requirement that computations
be restricted to those supported by or expressible in a specific workflow system. In addition
to limiting the scope of possible computations, this requires users of these systems to master
and then exclusively use a specific workflow creation environment.

By contrast, both ES3 and PASS [18] employ a descriptive approach to provenance: existing
processes’ interactions with each other and with the underlying computing environment
(filesystem, operating system, etc.) are transparently monitored, collected, and assembled post

hoc into a provenance graph. Neither ES3 nor PASS require a computation to be expressed
in any particular form or language. Both are thus attractive to scientists who do not wish to
commit to a specific workflow environment, or who wish to extract provenance information
from existing informal workflows (e.g. scripts) without rewriting them.

Relative to ES3, the PASS approach could be considered “strategy 0” (see section 2.1), in
that it pushes passive monitoring down into the operating system kernel. PASS can potentially
track system events at a much finer granularity than ES3, at the cost of a more complex
implementation and the need for system-level privileges.

3. ES3 IMPLEMENTATION OF THE CHALLENGE QUERIES

The workflow representation the challenge script (Figure 2) was assembled post hoc by ES3,
and retrieved from ES3 as a GraphML [19] document. The workflow diagrams are generated
by yWorks’ yEd [20] graph editor, using reformatted ES3 GraphML documents as input. (Files
are represented as circles and transformations as squares. Process arguments are omitted to
minimize visual clutter.)

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 0:1–10
Prepared using cpeauth.cls



ES3 AUTOMATIC PROVENANCE 7

Note that ES3 correctly recovers the fact that, in our version of ImageMagick, the convert

command is actually a shell script that invokes a convertb binary, and reads a delegates.mgk

configuration file. (The shell is shown as a sub-worklow, whose input is the convert script.)

3.1. Query 1

Simple provenance queries like Query 1 are answered in two steps. First, the object whose
provenance is being examined is mapped to an ES3 identifier (i.e., UUID), using an ES3
lookupFile request:

<ES3Request type="lookupFile">

<select>

<file>

<where>

<domain name="Local file system">

<identifier>

<regex>.*atlas x\.gif</regex>

</identifier>

</domain>

</where>

</file>

</select>

</ES3Request>

Then, the provenance of the object is retrieved with an ES3 getLineage request:

<ES3Request type="getLineage">

<traversal>

<uuidStart>7b25d64b-abbb-4aef-8042-22487d4a7342</uuidStart>

<direction>back</direction>

<granularity>link</granularity>

</traversal>

<output>

<format>graphml</format>

<formatOptions>nested</formatOptions>

<detailLevel>brief</detailLevel>

</output>

</ES3Request>

Note that this request specifies a back (i.e., ancestry) provenance trace, with results to be
returned in GraphML format.

3.2. Query 2

Query 2 is answered similarly to Query 1, with the addition of a termination condition to the
traversal specification in the getLineage request:

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 0:1–10
Prepared using cpeauth.cls



8 J. FREW ET AL.

<terminationConditions>

<transformation>

<where>

<name>

<regex>.*softmean</regex>

</name>

</where>

</transformation>

</terminationConditions>

I.e., the query is instructed to terminate when an ancestor transformation named softmean is
encountered.

3.3. Query 3

Query 3 is answered similarly to Query 1, with the addition of a termination condition to the
traversal specification in the getLineage request:

<terminationConditions>

<levels>5</levels>

</terminationConditions>

Although ES3 records the execution of nested workflows (e.g., processing scripts that execute
other scripts), it has no notion of explicit workflow stages. Therefore, we elected to answer
Query 3 by terminating the query after five consecutive provenance links were traversed, this
being equivalent to Stages 3, 4, and 5 in the Challenge workflow.

3.4. Query 4

ES3 answers Query 4 with a single getTransformation request, with the transformation name
and arguments constrained by regular expressions:

<ES3Request type="getTransformation">

<select>

<transformation>

<where>

<collection>/provenance_challenge/</collection>

<name>

<regex>.*align_warp</regex>

</name>

<arguments>

<regex>.*-m\s+12.*</regex>

</arguments>

</where>

</transformation>

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 0:1–10
Prepared using cpeauth.cls



ES3 AUTOMATIC PROVENANCE 9

</select>

</ES3Request>

Note that ES3 only partially succeeds for Query 4, since the XQuery language [21] lacks a
day-of-week comparison operator.

3.5. Queries 5, 8, and 9

The version of the Probulator used for the Challenge was unable to examine the contents of the
objects referenced in the Challenge workflow, or to acquire annotations from ancillary objects.
Therefore, ES3 did not answer Queries 5, 8, or 9. (We discuss this further in Section 4.)

3.6. Query 6

ES3 answers Query 6 in three steps. The first step, a getTranformation request identical to
Query 4, retrieves the align warp invocations that are potential ancestors of Query 6 result
set. The second step is a getLineage request that traces the provenance links forward from
these potential ancestors, stopping at and returning any softmean invocations encountered.
The third step, another getLineage request, retrieves the file objects that are the immediate
descendants of these softmean invocations.

3.7. Query 7

To answer query 7, we run a modified version of the Challenge workflow script, whose last 3
lines have been changed as follows:

#convert atlas-x.pgm atlas-x.gif

pgmtoppm 0.,0.,0.-1.,1.,1. atlas-x.pgm | pnmtojpeg > atlas-x.jpeg

#convert atlas-y.pgm atlas-y.gif

pgmtoppm 0.,0.,0.-1.,1.,1. atlas-y.pgm | pnmtojpeg > atlas-y.jpeg

#convert atlas-z.pgm atlas-z.gif

pgmtoppm 0.,0.,0.-1.,1.,1. atlas-z.pgm | pnmtojpeg > atlas-z.jpeg

Note that we allow the added programs to communicate via pipes (as opposed to intermediate
files); this is fully supported by ES3.

Having run both the original and modified scripts, we can retrieve their provenance graphs
with getLineage requests. We then subject the pair of graphs to a locally-developed, simple
graph differencing tool. Differences between the original and modified graphs are flagged on a
per-element basis (ignoring UUIDs), by adding a diff attribute to each element, whose value
may be either true or false. These marked-up graphs are then rendered graphically with their
differences highlighted (Figures 3a and 3b.)

Our solution to Query 7, while not implemented entirely as ES3 core queries, is nevertheless
responsive to one of the primary classes of user queries that ES3 as whole was designed to
support; namely, “what changed?” queries. It is extremely common for scientists developing ad

hoc workflows to notice differences in outputs across invocations between which nothing was

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 0:1–10
Prepared using cpeauth.cls



10 J. FREW ET AL.

changed. Our graph-differencing approach is designed to answer the “what changed?” query as
directly (and visually) as possible, while still allowing subsequent drill-down into the details.

4. CONCLUSION

The Provenance Challenge highlighted ES3s strengths and weaknesses. On the plus side,
ES3 seamlessly instrumented the Challenge workflow and recovered all relevant provenance
information, with absolutely no modification to any Challenge code, thereby validating the
transparency of the ES3 approach to provenance.

On the minus side, Query 4 exposed ES3s dependence on a strictly-conforming XQuery
implementation, and Queries 5, 8, and 9 had to be skipped owing to lack of an annotation
facility. Both of these shortcomings will be rectified, by the incorporation of an “Annotator”
into the ES3 Probulator, and by the (eventual) addition of extended date-time functions to
the ES3 web service layer.

The Annotator is a new ES3 component, not available when the Challenge queries were
originally addressed. The Annotator runs in parallel with the Logger, in the same environment
as the workflow being monitored, but it does not communicate with the plugins, and therefore
is not bound by the Logger’s real-time constraints. Instead, the Annotator receives messages
from the Logger about workflow items (files and programs) that it may wish to examine. Using
configuration rules, the Annotator may decide to (for example) calculate a checksum for a data
file, or retrieve a README file from the same directory a data file or program resides in. These
additional metadata (if any) are written to log files that the Transmitter can then “slipstream”
into the ES3 messages it assembles from the Logger files. The Annotator is intended to strike
a conservative balance between the completely transparent operation of the Logger and the
frequent need to obtain higher- level, user-specified metadata.

Our vision for ES3 extends to a constellation of distributed, cooperating installations,
reflecting the institutional distribution of the Earth remote sensing community. The next big
challenge for ES3 will be to manage distributed provenance information, so that provenance
can be traced across multiple system boundaries.

ACKNOWLEDGEMENTS

We thank Michael Colee for assembling and maintaining our computing environment, Greg Janée
for advice and encouragement, Kathy Scheidemen for administrative support, and Haavar Valeur for
his work on the probulator prototype.

REFERENCES

1. Frew J, Bose R. Earth System Science Workbench: a data management infrastructure for earth science
products. In SSDBM 2001: Thirteenth International Conference on Scientific and Statistical Database
Management, IEEE: 2001; pp.180-189. DOI: 10.1109/SSDM.2001.938550

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 0:1–10
Prepared using cpeauth.cls



ES3 AUTOMATIC PROVENANCE 11

2. Dozier J, Painter TH. Multispectral and hyperspectral remote sensing of alpine snow properties. Annual
Review of Earth and Planetary Sciences 2004; 32:465-494. DOI: 10.1146/annurev.earth.32.101802.120404

3. Maritorena S, Siegel DA. Consistent merging of satellite ocean color data using a semi-analytical model.
Remote Sensing of Environment 2005; 94(4):429-440. DOI: 10.1016/j.rse.2004.08.014

4. Valeur, H. Tracking the lineage of arbitrary processing sequences. Masters thesis, Department of Computer
and Information Science, Norwegian University of Science and Technology, Trondheim, July 2005.
http://urn.ub.uu.se/resolve?urn=urn:nbn:no:ntnu:diva-1341

5. IDL Data Visualization & Analysis Platform. http://www.ittvis.com/idl [27 November 2006].
6. Moreau L, Ludäscher B, Altintas I, Barga RS, Bowers S, Callahan S, Chin J, Clifford B, Cohen S, Cohen-

Boulakia S, Davidson S, Deelman E, Digiampietri L, Foster I, Freire J, Frew J, Futrelle J, Gibson T, Gil
Y, Goble C, Golbeck J, Groth P, Holland DA, Jiang S, Kim J, Koop D, Krenek A, McPhillips T, Mehta
G, Miles S, Metzger D, Munroe S, Myers J, Plale B, Podhorszki N, Ratnakar V, Santos E, Scheidegger
C, Schuchardt K, Seltzer M, Simmhan YL, Silva C, Slaughter P, Stephan E, Stevens R, Turi D, Vo H,
Wilde M, Zhao J, Zhao Y. The First Provenance Challenge. Concurrency and Computation: Practice and
Experience 2007; this issue.

7. Krenek A, Sitera J, Matyska L, Dvorak F, Mulac M, Ruda M, Salvet Z. glite job provenance a job-centric
view. Concurrency and Computation: Practice and Experience 2007; this issue.

8. Simmhan YL, Plale B, Gannon D. Querying capabilities of the karma provenance framework. Concurrency
and Computation: Practice and Experience 2007; this issue.

9. Zhao J, Goble C, Stevens R, Turi D. Mining tavernas semantic web of provenance. Concurrency and
Computation: Practice and Experience 2007; this issue.

10. Futrelle J, Myers J. Tracking provenance semantics in heterogeneous execution systems. Concurrency and
Computation: Practice and Experience 2007; this issue.

11. Barga RS, Digiampietri LA. Automatic capture and efficient storage of escience experiment provenance.
Concurrency and Computation: Practice and Experience 2007; this issue.

12. Ludäscher B, Podhorszki N, Altintas I, Bowers S, McPhillips TM. Models of computation and provenance,
and the RWS approach. Concurrency and Computation: Practice and Experience 2007; this issue.

13. Schuchardt K, Gibson T, Stephan E, Chin G, Applying content management to automated provenance
capture. Concurrency and Computation: Practice and Experience 2007; this issue.

14. Clifford B, Foster I, Hategan M, Stef-Praun T, Wilde M, Zhao Y. Tracking provenance in a virtual data
grid. Concurrency and Computation: Practice and Experience 2007; this issue.

15. Scheidegger C, Koop D, Santos E, Vo H, Callahan S, Freire J, Silva C. Tackling the provenance challenge
one layer at a time. Concurrency and Computation: Practice and Experience 2007; this issue.

16. Kim J, Deelman E, Gil Y, Mehta G, Ratnakar V. Provenance trails in the wings/pegasus system.
Concurrency and Computation: Practice and Experience 2007; this issue.

17. Cohen-Boulakia S, Biton O, Cohen S, Davidson S. Addressing the provenance challenge using zoom.
Concurrency and Computation: Practice and Experience 2007; this issue.

18. Seltzer M, Holland DA, Braun U, Muniswamy-Reddy KK. Pass-ing the provenance challenge. Concurrency
and Computation: Practice and Experience 2007; this issue.

19. Brandes U, Eiglsperger M, Herman I, Himsolt M, Marshall MS. GraphML progress report: structural layer
proposal. In Proc. 9th Intl. Symp. Graph Drawing (GD ’01), LNCS 2265:501-512; Springer-Verlag: 2002.

20. yEd - JavaTMGraph Editor. http://www.yworks.com/en/products yed about.htm [27 November 2006].
21. Malhotra A, Melton J, Walsh N. XQuery 1.0 and XPath 2.0 functions and operators. W3C Proposed

Recommendation 21 November 2006. http://www.w3.org/TR/xquery-operators [27 November 2006].

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 0:1–10
Prepared using cpeauth.cls


